

Universidad Autónoma del Estado de México Instituto Interamericano de Tecnología y Ciencias del Agua Doctorado en Ciencias del Agua

Pronóstico estacional de escurrimientos en cuencas del Sahel, en África occidental

TESIS

Que para obtener el grado de Doctor en Ciencias del Agua

Estudiante:

M. en C. A. Luis Eduardo Balcázar Ordóñez

Tutores:

Dr. Khalidou Mamadou Bâ (Tutor Académico)

Dr. Carlos Díaz Delgado (Tutor adjunto)

Dr. Miguel Angel Gómez Albores (Tutor adjunto)

Revisores: Dr. Carlos Alberto Mastachi Loza Dr. Luis Ricardo Manzano Solís Dra. Aleida Yadira. Vilchis Francés Dr. Roberto Franco Plata

Toluca, México, diciembre de 2021

Resumen

El Sahel es la región semiárida más grande del mundo. El clima de este lugar presenta una alta variabilidad interanual, prueba de ello, en los años setenta y ochenta ocurrieron sequías severas, mientras que en años recientes se han observado inundaciones frecuentes. Un pronóstico eficaz y oportuno de los escurrimientos es de gran importancia para millones de personas de la región, la mayoría dedicadas a la agricultura de subsistencia. El objetivo de este estudio fue modelar los escurrimientos diarios en cuatro subcuencas del Sahel utilizando pronósticos de precipitación y de temperatura. Se generaron pronósticos mensuales a partir de datos océano-atmosféricos del Atlántico y del Pacífico utilizando modelos estadísticos lineales y no lineales. En el pronóstico de la lluvia se utilizó la temperatura de la superficie del mar (SST) del Atlántico en los modelos de regresión lineal simple, polinomial y exponencial. Además, en un modelo multivariado (stepwise regression) se utilizaron las variables: SST, presión media del nivel del mar (MSLP) y humedad relativa (RHUM) del Atlántico; así como los índices del Pacífico: Niño1+2, Niño3.4, Niño4, Oceánico El Niño (ONI) y Trans-Niño (TNI). Además, como variable dependiente de los modelos de pronóstico de lluvia se utilizaron los datos del producto Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks - Climate Data Record (PERSIANN-CDR). Adicionalmente, en el pronóstico de temperatura se implementaron los modelos lineal simple y polinomial con la SST del Atlántico. La temperatura del aire del producto ERA5 de European Centre for Medium-Range Weather Forecasts (ECMWF) (Ta2m-ERA5) se empleó como variable dependiente de los modelos de temperatura. Por otro lado, para encontrar las regiones del Atlántico que tienen mejor teleconexión con las variables climáticas del Sahel, los datos SST, MSLP y

RHUM se clasificaron en regiones utilizando análisis de componentes principales (ACP) y análisis clúster. Se observó que las regiones SST del Atlántico tropical norte y el extremo sur del Golfo de Guinea tienen mayor poder predictivo sobre la precipitación y la temperatura de la región.

El rendimiento de los modelos de pronóstico evaluado con el coeficiente de determinación ajustado (R2ajs) fue mejor con el modelo polinomial utilizando la SST del Atlántico tropical norte: precipitación (R²ajs = 0.81, lag de 11 meses) y temperatura (R²ajs = 0.51, lag de 14-16 meses). Los pronósticos mensuales se desagregaron en series diarias. El modelo de desagregación se evaluó con los índices: probabilidad de detección (POD), falsa alarma (FAR) y el índice de frecuencia bias (FBI). Los datos desagregados se utilizaron en el modelo hidrológico CEQUEAU para pronosticar los escurrimientos diarios de los ríos Bani (subcuenca del alto Niger); y Bafing, Faleme y Bakoye (subcuencas del río Senegal). Los parámetros de inicio del modelo CEQUEAU se utilizaron de un estudio previo que fue calibrado y validado con la lluvia PERSIANN-CDR y la temperatura ERA-Interim. El rendimiento de los modelos de escurrimientos se midió con la eficiencia de Nash-Sutcliffe (NSE). En el periodo 1985-2016 el NSE fue 0.796 para Beneny Kegny, 0.730 para Kidira, 0.526 para Bafing Makana y 0.825 para Oualia. En la evaluación por años, el 88% del periodo tuvieron NSE positivos, de los cuales el 54% fueron mayores a 0.5. El NSE más alto fue NSE = 0.878 y el más bajo NSE = -3.692.

Los objetivos planteados en la investigación se cumplieron en su totalidad. Los modelos de pronóstico, de desagregación temporal, así como el modelo hidrológico respondieron satisfactoriamente con la metodología planteada. Estos modelos son fáciles de implementar y necesitan pocos recursos informáticos para su reproducibilidad. Además, se utilizaron datos de satélite asequibles y un modelo hidrológico distribuido evaluados en estudios previos con resultados satisfactorios. Los métodos y resultados de esta investigación pueden llegar a ser herramientas de gran utilidad para la toma de decisiones, así como para la mitigación de los impactos, y la maximización de la resiliencia de la población del Sahel, por los eventos relacionados con la escasez o exceso de agua.

Abstract

The Sahel is the world's largest semi-arid region. The climate is highly variable yearly, with severe droughts occurring in the 1970s and 1980s and frequent flooding in recent years. Therefore, an effective and well-timed runoff forecast is of great importance to millions of people in the region, especially for those living from subsistence agriculture. This study aimed to model daily runoff in four sub-basins of the Sahel by disaggregating monthly rainfall and temperature forecasts. Various linear and non-linear statistical models were used for the monthly forecasts considering the Atlantic and Pacific Ocean-atmospheric indices as explicative variables. In addition, the Atlantic Sea Surface Temperature (SST) was used in the rainfall forecast in linear, polynomial, and exponential regression models. Several explicative variables were explored for the precipitation forecast through a stepwise regression to elucidate the most impacting variables preventing the model overfitting. Explorations were made considering the Atlantic SST, Mean Sea Level Pressure (MSLP), Relative Humidity (RHUM), as well as the Pacific indices: Niño1+2, Niño3.4, Niño4, Oceanic Niño Index (ONI), and Trans-Niño Index (TNI). In addition, precipitation estimation from Remotely Sensed Information Using Artificial Neural Networks - Climate Data Record (PERSIANN-CDR) was considered the dependent variable. On the other hand, the temperature forecast used only the SST in the simple linear and polynomial models. The air temperature from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 product (Ta2m-ERA5) was used as the dependent variable in the forecast models. The SST, MSLP, and RHUM

images consider a wide spatial range. Therefore, the complete images were classified by principal component analysis (PCA) and cluster analysis to determine which Atlantic regions have the best teleconnection with Sahel climate variables. The SST regions of the northern tropical Atlantic and the very south of the Gulf of Guinea have a better predictive power for precipitation and temperature.

Model performance was measured using the Nash-Sutcliffe efficiency (NSE) and adjusted coefficient of determination (R²ajs). The highest performance of the rainfall and temperature forecasts were reached with the polynomial model, using the tropical North Atlantic SST. For the rainfall model, the average R²ajs was 0.81 with an 11-month lag; in stark contrast, the average R²ajs was 0.51 with a 14 to 16-month lag for temperature. The monthly forecasts were disaggregated into daily series. The disaggregation model was evaluated with the indices: the probability of detection (POD), false alarm rate (FAR), and frequency bias index (FBI). Disaggregated data were used in calibrated CEQUEAU hydrological models to forecast the daily runoffs of the Bani river (upper Niger), Bafing, Faleme, and Bakoye (Senegal river sub-basins). The parameters of the CEQUEAU model were those obtained in a previous study using the raw PERSIANN-CDR rainfall and raw ERA-Interim temperature. Results show that the runoff models performance during 1985-2016 was satisfactory according to the NSE (0.796 for Beneny Kegny, 0.730 for Kidira, 0.526 for Bafing Makana, and 0.825 for Oualia). In the assessment by year, 88% of the period exhibited positive NSE, of which 54% were greater than 0.5. The highest NSE was 0.878, and the lowest NSE was 3.692.

The proposed methodology for the climate forecast models, temporal disaggregation, and the hydrological model worked satisfactorily. It is worth mentioning that these models are easy to implement and require few computer resources for reproducibility. In addition, available satellite data and a distributed hydrological model evaluated in previous studies were used with satisfactory results. Finally, it is highly remarkable that the methods and results of this research could be advantageous for decision-making to mitigate the impacts and maximize the resilience of the Sahelian population who face the consequences of maximum hydrological events.

Índice

AGRADECIMIENTOS	II
RESUMEN	IV
CAPÍTULO 1: INTRODUCCIÓN	20
1.1. Generalidades	20
1.2. Antecedentes	23
1.3. Justificación	29
1.4. Hipótesis	30
1.5. Objetivos	
1.5.1. Objetivo general	
1.5.2. Objetivos específicos	31
CAPÍTULO 2: MARCO TEÓRICO	33
2.1. El clima	
2.1.1. El viento	35
2.1.2. Temperatura del aire	35
2.1.3. Precipitación	36
2.1.4. Humedad relativa	
2.1.5. Presión atmosférica	
2.2. Factores del clima local	39
2.2.1. Monzón de África occidental	
2.2.2. Corrientes marinas	40
2.2.3. Vientos alisios	40
2.3. Teleconexiones	41
2.4. Zona de convergencia intertropical	42
2.5. Variabilidad del Atlántico	42
2.5.1. Predicción y pronóstico climático	44
2.6. Predictores	45
2.6.1. Temperatura de la superficie del mar	45
2.6.2. Índices oceánicos	46
2.6.2.1. Índice oscilación del sur	46
2.6.2.2. Índice oceánico El Niño	51
2.6.2.3. Índice Trans-Niño	52
2.7. Análisis de componentes principales y clúster	52
2.8. Modelos estadísticos de regresión	53
2.8.1. Regresión lineal simple	54

2.8.2. Regresión polinomial	55
2.8.3. Regresión paso a paso	55
2.8.4. Medición de la colinealidad	56
2.8.5. Modelos no lineales	56
2.9. Sensores remotos	57
2.10. Modelos hidrológicos	58
CAPÍTULO 3: ÁREA DE ESTUDIO	61
3.1. Clima de África occidental	63
3.2. Cobertura y uso del suelo	68
3.3. Caudales	70
CAPÍTULO 4: MÉTODO DE INVESTIGACIÓN	72
4.1. Entrada y análisis de datos	75
4.1.1. Datos observados	79
4.1.1.1. Datos meteorológicos e hidrométricos	79
4.1.1.2. Temperatura del mar observada (boyas)	80
4.1.2. Datos océano-atmosféricos	81
4.1.2.1. Precipitación PERSIANN-CDR	82
4.1.2.2. Temperatura del aire (Ta2m-ERA5)	83
4.1.2.3. Temperatura de la superficie del mar	83
4.1.2.4. Presión del nivel medio del mar	84
4.1.2.5. Humedad relativa	84
4.1.2.6. Índices El Niño	85
4.1.3. Herramientas para el análisis de datos	85
4.2. Clasificación del Atlántico	86
4.3. Teleconexiones océano-clima	87
4.4. Modelos de pronóstico	88
4.5. Pronóstico de precipitación y temperatura	90
4.5.1. Pronóstico con modelos lineales	91
4.5.2. Modelo no lineal (nls): exponencial	92
4.6. Desagregación temporal	93
4.6.1. Desagregación por el método de Chow-Lin	94
4.6.2. Evaluación del método de desagregación	96
4.7. Modelación hidrológica	97
4.8. Entradas del modelo hidrológico	
4.9. Eficiencia del modelo hidrológico	98
4.9.1. Criterios de información Akaike	98
4.9.2. Coeficiente de determinación	
4.9.3. Coeficiente de determinación ajustado	99

4.9.4. Coeficiente de correlación de Pearson	100
4.9.5. Eficiencia de Nash-Sutcliffe	101
4.9.6. Porcentaje bias	102
4.9.7. Error relativo	102
4.9.8. Raíz del error cuadrático medio	103
4.9.9. Error medio absoluto	103
CAPÍTULO 5: RESULTADOS	105
5.1. Análisis de base de datos	105
5.1.1. Validación de los datos PERSIANN-CDR	105
5.1.2. Validación de temperatura del aire	110
5.1.3. Validación de SST	
5.2. Teleconexiones y clasificación del Atlántico	114
5.2.1. Correlación SST versus precipitación	117
5.2.2. Selección de covariables (stepwise regression)	121
5.2.3. Correlación SST versus temperatura	123
5.3. Pronóstico de variables climáticas	125
5.3.1. Pronóstico de la lluvia	125
5.3.2. Pronóstico de la temperatura	135
5.4. Validación de los pronósticos	139
5.5. Desagregación temporal	140
5.6. Pronóstico de escurrimientos	142
CAPÍTULO 6: DISCUSIÓN DE RESULTADOS	149
6.1. Distribución de la lluvia en la región	149
6.2. Validación de los datos de entrada	150
6.3. Discretización del Atlántico y teleconexiones	151
6.4. Pronóstico de lluvia y temperatura	152
6.5. Desagregación de series mensuales en diarias	157
6.6. Pronóstico de escurrimientos	158
6.7. Contribución científica y social	160
CAPÍTULO 7: CONCLUSIONES Y RECOMENDACIONES	161
REFERENCIAS	165
ANEXOS	

Índice de Figuras

Figura 1-1. Ejemplo de pronóstico del foro PRESASS para la estación húmeda del año 2020. Las *letras* A, N y B indican *la* probabilidad del pronóstico de lluvia, respectivamente, sobre, cerca o

bajo la normal. (https://public.wmo.int/en/media/news/wetter-average-rainy-season-sahelian-strip).
Figura 2-1. Relación entre presión atmosférica y altitud, fuente: http://www.atmo.arizona.edu/students/
Figura 2-2. Esquema de los componentes de la variabilidad del Atlántico, tomado de Foltz et al. (2019)
Figura 2-3. Temperatura media de la superficie del mar, octubre 201846
Figura 2-4. Regiones del Pacífico tropical de los índices El Niño: Niño1+2, Niño3, Niño3.4 (ONI) y Niño4, sobre una imagen de anomalía de SST47
Figura 2-5. Efecto de El Niño en los patrones de lluvia global. fuente: International Research Intitutute for Climate and Society (IRI). https://blogs.ei.columbia.edu/2018/07/27/enso-la-nina- food-security/
Figura 2-6. Efecto de La Niña en los patrones de lluvia global. Fuente: International Research Intitutute for Climate and Society (IRI). https://blogs.ei.columbia.edu/2018/07/27/enso-la-nina- food-security/
Figura 2-7. Representación de los eventos Niña-Niño con el SOI. Las líneas azules y rojas indica el límite ± 8, para los eventos La Niña y El Niño, respectivamente51
Figura 2-8. Esquema del modelo CEQUEAU: A) función de producción en la fase líquida y B) función de transferencia60
Figura 3-1. <i>Localización del área de estudio: cuencas de</i> los ríos Bani en Beneny Kegny (alto Niger) y Senegal en Bakel (incluye las subcuencas Bafing, Bakoye y Faleme) sobre un MNA (~100 m). Ubicación de las e <i>staciones hidrometeorológicas, y</i> ubicación de las boyas <i>d</i> el Atlántico, frente a África occidental
Figura 3-2. Distribución geográfica de las zonas climáticas para África occidental (L'Hote et al., 1996)64
Figura 3-3 . Distribución de la precipitación media con el producto PERSIANN-CDR en los años 1983-20 <i>20;</i> y la lluvia observada en los pluviómetros entre 1983-201566
Figura 3-4. Circulación del aire de la región: (izq.) en el mes de enero, (der) en los meses julio- agosto (Nicholson, 2012)67
Figura 3-5. Cobertura del suelo de <i>África occidental</i> . Fuente: base de datos de <i>Global Land Cover Characterization</i>
Figura 3-6. Caudales medios anuales <i>d</i> el río Senegal en la estación Bakel (1904-2014). La línea azul <i>es el caudal</i> antes de la puesta en marcha de la represa Manantali y la línea azul claro <i>es</i> el caudal controlado por la represa. La línea roja punteada representa el caudal medio histórico de la serie de datos
Figura 4-1. Diagrama de flujo general del método de investigación73
Figura 4-2. Procedimiento para el análisis y validación de los productos de satélite y de los índices climáticos75
Figura 4-3. Regionalización del Atlántico y extracción de datos, código en Anexo A2 y Anexo A3.

Figura 4-4. Obtención de los mejores coeficientes de los modelos de predicción
Figura 4-5. Procedimiento para los pronósticos mensuales de precipitación y temperatura, y la desagregación a frecuencia diaria91
Figura 5-1. Validación de la lluvia del producto PERSIANN-CDR con datos observados en pluviómetros, muestra de nueve estaciones (punto-píxel), en el periodo 1983-2015107
Figura 5-2. Precipitación mensual por cuenca, PERSIANN-CDR, 1983-2018108
Figura 5-3. Distribución espacio-temporal de la l <i>luvia mensual PERSIANN-CDR sobre África</i> occidental, en el periodo1983-2020109
Figura 5-4. Distribución espacio-temporal de la temperatura media mensual <i>de África occidental</i> , datos Ta2m-ERA5 <i>en el periodo1983-2020</i> 112
Figura 5-5. Validación del producto <i>SST de ERA5</i> con los datos de <i>temperatura del mar de</i> las boyas localizadas frente a las costas de África occidental y el Golfo de Guinea, entre 1997 y 2019113
Figura 5-6. Representación de los componentes principales que explican la variabilidad de la SST.
Figura 5-7. Número óptimo de conglomerados de SST en el Atlántico
Figura 5-8. Clasificación del Atlántico tropical entre 20°S y 40°N. Las letras significan "s" son para SST, "m" para MSLP y "r" para RHUM, la numeración empieza en el golfo de guinea (1) hasta el Atántico tropical norte (3)116
Figura 5-9. Lag entre las series de SST y PERSIANN-CDR, de las Regiones A (SST1), B (SST2) y C (SST3)117
Figura 5-10. Coeficientes de correlación de SST vs la precipitación con lag de 0 y 12 meses, donde SST1, <i>SST2</i> y <i>SST3</i> son, respectivamente, la SST del Golfo de Guinea, SST del Atlántico tropical central y SST del Atlántico tropical norte. Los recuadros rojos indican la correlación más alta119
Figura 5-11. lag h = t-0 a h = t-15, para la región SST1 (Golfo de Guinea)
Figura 5-12. Matriz de correlación de la precipitación con 8 covariables
Figura 5-13. Coeficientes de correlación de SST vs la <i>temperatura</i> con lag de 6 y 18 meses, donde SST1, SST2 y SST3 son, respectivamente, la SST del Golfo de Guinea, SST del Atlántico tropical central y SST del Atlántico tropical norte. Los recuadros <i>azules</i> indican la correlación más alta para propósitos de este estudio
Figura 5-14. Mejores modelos de predicción de lluvia en cada píxel, <i>representados</i> por la región y el modelo. Se considera el R ² ajs > 0.50, p-valor < 0.05 y AIC menor. Cuenca Bani en Beneny Kegny y Senegal en Bakel
Figura 5-15. Distribución del coeficiente NSE para cada modelo y región SST126
Figura 5-16. Distribución del NSE con el modelo lineal (lm) en las regiones del Atlántico128
Figura 5-17. <i>Distribución del NSE</i> con el modelo polinomial (<i>poly</i>) en las regiones del Atlántico. 129
Figura 5-18. <i>Distribución del NSE</i> con el modelo <i>no-lineal</i> (<i>nlm</i>) en las regiones del Atlántico130
Figura 5-19. <i>Distribución del NSE con</i> el modelo multivariado (paso a paso) en las regiones del Atlántico

Figura 5-20. Evaluación de los modelos en los píxeles donde se ubica la estación meteorológica. Donde lm es modelo lineal simple, nls es el modelo exponencial (no lineal), poly es el modelo polinomial y step es el modelo de regresión paso a paso (stepwise regression)......132 Figura 5-21. Pronóstico de precipitación *en* las cuencas Bani y Senegal con el modelo polinomial y el predictor SST del Atlántico tropical norte con lag de 11 meses. Muestra del periodo 2005 – 2020. Figura 5-22. Mejores modelos de pronóstico de temperatura en cada píxel dados por la región SST y el modelo. (Izq.) Se considera el R²ajs > 0.50, p-valor < 0.05 y AIC menor. (Der.) R²ajs < 0.50. SST1, SST2 y SST3 son, respectivamente, las regiones SST del Golfo de Guinea, Atlántico tropical Figura 5-23. Pronóstico de temperatura en las cuencas Bani y Senegal con el modelo polinomial y el predictor SST del norte del Atlántico tropical. Muestra del periodo 2005 - 2020......137 Figura 5-24. Validación de la precipitación de pronóstico: A) Diagrama de caja (boxplot) del R²ajs para los punto-pixeles evaluados, B) distribución de la lluvia de pronóstico medido en el puntopixel. La explicación del diagrama de caja se muestra en el Anexo C2......139 Figura 5-25. Muestra de desagregación de lluvia estación Bakel.....141 Figura 5-26. Desagregación de lluvia estación Labe.....141 Figura 5-27. Validación de la temperatura diaria de pronóstico en el punto-píxel. La linea roja es la curva de ajuste del modelo lineal y la linea azul es la relación uno a uno de la temperatura ERA5 (observada) y la temperatura de pronosticada con el modelo lineal, periodo 2015-2020......142 Figura 5-28. Escurrimientos del río Bani en la estación Beneny Kegny. (A) hietograma con PERSIANN-CDR y pronóstico de lluvia diaria. (B) caudales simulados con el producto PERSIANN-CDR y escurrimientos de pronóstico. Q = caudal, observado en la estación hidrométrica y simulado, tss = son los resultados obtenidos en est*e estudio (tesis*), Bâ = son los resultados reportados en Bâ et al. (2018).....145 Figura 5-29. Escurrimientos del río Faleme en la estación Kidira. (A) hietograma con PERSIANN-CDR v pronóstico de lluvia diaria. (B) caudales simulados con el producto PERSIANN-CDR v escurrimientos de pronóstico. Q = caudal, observado en la estación hidrométrica y simulado, tss = son los resultados obtenidos en este estudio (tesis), Bâ = son los resultados reportados en Bâ et al. Figura 5-30. Escurrimientos del río Bafing en Bafing Makana: (A) hietograma con PERSIANN-CDR y pronóstico de lluvia diaria. (B) caudales simulados con el producto PERSIANN-CDR y escurrimientos de pronóstico. O = caudal, observado en la estación hidrométrica y simulado, tss = son los resultados obtenidos en este estudio (tesis), $B\hat{a} = son los resultados reportados en B\hat{a} et al.$ Figura 5-31. Escurrimientos del río Bakoye en Oualia: (A) hietograma con PERSIANN-CDR y pronóstico de lluvia diaria. (B) caudales simulados con el producto PERSIANN-CDR y escurrimientos de pronóstico. Q = caudal, observado en la estación hidrométrica y simulado, tss = son los resultados obtenidos en este estudio (tesis), Bâ = son los resultados reportados en Bâ et al.

Índice de tablas

Tabla 1-1. Estudios hidrometeorológicos realizados en el Sahel (pronóstico de precipitación y de escurrimientos) 27
Tabla 3-1. Clasificación del clima de África occidental65
Tabla 3-2. Precipitación media interanual de las subcuencas de los ríos Bani (alto Niger) y Senegal con PERSIANN-CDR, en el periodo 1983-202066
Tabla 3-3. Superficie de la cobertura del suelo en la cuenca del río Bani
Tabla 3-4. Superficie de la cobertura del suelo en la cuenca del río Senegal en Bakel
Tabla 4-1. <i>Información</i> resumida de los datos de entrada (ver complemento de la información en el Anexo B1)77
Tabla 4-2. Disponibilidad de datos observados de precipitación y temperatura desde 1983 a 2015. 80
Tabla 4-3. Parámetros del modelo de desagregación <i>para</i> el método de chow-lin
Tabla 4-4. Matriz de confusión para índices POD, FAR y FBI96
Tabla 4-5. Interpretación del coeficiente de correlación de Pearson
Tabla 4-6. Criterios para medir la eficiencia de un modelo hidrológico (Moriasi et al., 2015)104
Tabla 5-1. Validación de la precipitación del producto PERSIANN-CDR con los datos observados de estaciones meteorológicas entre 1983 y 2015106
Tabla 5-2. Evaluación de la temperatura del producto Ta2m-ERA5 en el punto-píxel110
Tabla 5-3. Componentes principales de la SST del Atlántico tropical en el periodo 1983-2020114
Tabla 5-4. <i>Coeficientes</i> del modelo multivariado de la precipitación con 8 covariables121
Tabla 5-5. Análisis de inflación de la varianza con 8 covariables122
Tabla 5-6. Análisis de inflación de la varianza con 4 covariables123
Tabla 5-7. Rendimiento de los modelos de precipitación en el punto pixel, con el 30% de los datos, p-valor < 0.05 y R2ajs > 0.5127
Tabla 5-8. Pronóstico de precipitación por mes-año en las cuencas Bani y Senegal134
Tabla 5-9. Rendimiento de los modelos de temperatura en los píxeles de las estaciones meteorológicas
Tabla 5-10. Pronóstico de <i>temperatura</i> por mes-año en las cuencas Bani y Senegal
Tabla 5-11. Validación de la precipitación diaria de pronóstico en el punto-pixel de 20 estaciones.
Tabla 5-12. Rendimiento del modelo de pronóstico de escurrimientos diarios con los parámetros de Bâ et al (2018) en los ríos Bani en Beneny Kegny, Faleme en Kidira, Bafing en Bafing Makana, Bakoye en Oualia
Tabla 5-13. Error sobre los caudales medios y las láminas interanuales, en el periodo 1985-2016 y error en las lluvias de los años 1997-1998148
Tabla 6-1. Comparación de resultados de los modelos de precipitación con otros estudios155
Tabla 6-2. Comparación de los resultados de modelos de escurrimientos de este estudio con estudios previos

Nomenclatura

ACMAD	African Centre of Meteorological Application for Development.	
ACC	Análisis de Correlación Canónica.	
ACP	Análisis de Componentes Principales.	
AGRHYMET	Agro-Hydro-Meteorological Centre of the CILSS.	
AIC	Akaike Information Criterion.	
AMI	Atlantic Marine ITCZ (Intertropical Convergence Zone).	
AMM	Atlantic Meridional Mode.	
AMSR	Advanced Microwave Scanning Radiometer.	
AMV	Atlantic Multidecadal Variability.	
AVHRR	Advanced Very High Resolution Radiometer.	
AZM	Atlantic Zonal Mode.	
CC	Correlación cruzada.	
CHRS	Center for Hydrometeorology and Remote Sensing.	
CILSS	Comité inter-État de lutte contre la sécheresse au Sahel.	
CRA	Centro Regional AGRHYMET.	
CRAN	The Comprehensive R Archive Network.	
CPT	Climate Predictability Tool.	
ECMWF	European Centre for Medium-Range Weather Forecasts.	
ECOWAS	Centre for Renewable Energy and Energy Efficiency.	
ECREEE	ECOWAS Centre for Renewable Energy & Energy Efficiency.	
ER	Error Relativo.	
ERA	ECMWF reanálisis.	
EROS	Earth Resources Observation and Science.	
ENSO	El Niño-Southern Oscillation (ENOS).	
FAR	False Alarm Ratio.	
FBI	Frequency Bias Index.	
CGIAR-CSI	Consultative Group on International Agricultural Research -	
	Consortium for Spatial Information.	
GHRSST	Group for High Resolution.	
GLCC	Global Land Cover Characterization.	
GPCP	Global Precipitation Climatology Project.	
IITCA	Instituto Interamericano de Tecnología y Ciencias del Agua.	
IFREMER	The French Oceanographic Fleet.	

INPE	Instituto Nacional de Investigaciones Espaciales del Brasil.
INRS	Institut National de la Rechearche Scientifique.
INRS-ETE	INRS – Eau Terre Environmement.
INSAH	l'Institut du Sahel.
IPCC	The Intergovernmental Panel on Climate Change.
IR	Infrarrojos (banda espectral).
IRD	Institut de Recherche pour le Développement.
MAE	Mean absolute error.
MCG	Mínimos Cuadrados Generalizados.
MCGe	Modelo de Circulación General.
MHD	Modelo Hidrológico Distribuido.
MNA	Modelo Numérico de Altitud.
MSLP	Mean Sea Level Pressure.
MW	Microonda (banda espectral).
NCEP	National Centers for Environmental Prediction.
NCAR	National Center for Atmospheric Research.
NDVI	Normalized Difference Vegetation Index.
NOAA	National Oceanic Atmospheric Administration.
NSE	Nash-Sutcliffe Efficiency coefficient.
OMM	Organización Meteorológica Mundial (WMO).
OMVS	Organisation pour la Mise en Valeur du fleuve Sénégal.
ONI	Oceanic Niño Index.
OSTIA	Operational Sea Surface Temperature and Sea Ice Analysis.
PBIAS	Porcentaje bias (%).
PERSIANN-CDR	Precipitation Estimation from Remotely Sensed Information Using
	Artificial Neural Networks - Climate Data Record.
PIRATA	Prediction and Research Moored Array in the Tropical Atlantic.
POD	Probability Of Detection.
PRESASS	Prévisions Climatiques Saisonnières en Afrique Soudano- Sahélienne.
PRESAO	Prévisions Climatiques Saisonnières en Afrique de l'Ouest.
Qcal	Caudal calculado (m ³ s ⁻¹).
Qobs	Caudal observado (m ³ s ⁻¹).
R, r	Coeficiente de correlación de Pearson (-).
R ²	Coeficiente de determinación (-).
R ² ajs	Coeficiente de determinación ajustado (-).

RHUM	Relative Humidity (%).	
RMSE	Root Mean Square Error.	
RIC	Rango intercuartílico (-).	
SLP	Sea Level Pressure (Pa).	
SOI	Southern Oscillation Index (-).	
SRTM	Shuttle Radar Topography Mission.	
SST	Sea Surface Temperature (°C).	
SWAT	Soil and Water Assessment Tool.	
Ta	Temperatura del aire (°C).	
TAV	Tropical Atlantic Variability.	
TNI	Trans-Niño Index.	
TRMM	Tropical Rainfall Measuring Mission.	
UAEMex	Universidad Autónoma del Estado de México.	
USGS	United States Geological Survey.	
Vcal	Variable calculada (mm, °C, etc.).	
Vobs	Variable observada (mm, °C, etc.).	
WAM	West African Monsoon.	
ZCIT	Zona de Convergencia Intertropical (ITCZ).	
Σ	Matriz de varianzas y covarianzas.	
С	Matriz de conversión.	
Х	Matriz de alta frecuencia.	
§	No aplica o dato faltante.	

Unidades

hPa	hectopascales.
m	metros.
mm	milímetros.
mmHg	milímetros de mercurio.
km	kilómetros.
Pa	pascales.
0	grados latitud/longitud.
°C	grados Celsius.
°F	grados Fahrenheit.
°K	grados Kelvin.
%	porcentaje.

Glosario de términos

Monzón, "Cambio estacional de la dirección del viento, desde el mar al continente o desde el continente al mar, asociado con modificaciones extensas de la temperatura y la lluvia en regiones subtropicales" (Meteoterm, 2018).

Observación meteorológica-hidrológica, "Medición o evaluación directa de uno o más elementos meteorológicos o hidrológicos, tales como precipitación, temperatura, el nivel de agua, el caudal, entre otros" (Meteoterm, 2018).

Oscilación climática, "Fluctuaciones en la que la variable tiende a cambiar progresiva y suavemente entre máximos y mínimos sucesivos" (WMO-Nro. 385, 2012).

Oscilación del sur, "Oscilación en gran escala de la presión entre los océanos Pacífico e Índico. Esa oscilación de masas de aire entre los hemisferios ocasiona cambios importantes de los vientos, la temperatura y la precipitación" (WMO-Nro. 385, 2012).

Resiliencia, "Capacidad de un sistema socioecológico de afrontar un suceso o perturbación peligroso respondiendo o reorganizándose de modo que mantenga su función esencial, su identidad y su estructura. Además, debe conservar al mismo tiempo la capacidad de adaptación, aprendizaje y transformación" (Meteoterm, 2018; WMO-Nro. 385, 2012).

Sahel, "Región eco-climática y bio-geográfica de transición entre el desierto del Sahara al norte y la sabana africana al sur" (Meteoterm, 2018).

Presión de vapor, "Presión que ejerce el vapor de agua contenido en el aire húmedo. Representa la presión parcial del vapor de agua, es decir la presión que ejercería ese vapor de agua si se encontrara solo ocupando el mismo volumen de la mezcla (la atmósfera) a la misma temperatura. La presión de vapor se expresa en milibares" (Meteoterm, 2018).

Aportaciones

En el periodo de investigación de la tesis y en proyectos afines, se realizaron los siguientes aportes de divulgación científica:

Balcázar, L., Bâ, K., Díaz-Delgado, C., Gaona, G., Gómez-Albores, M., Mastachi-Loza, C., & Manzano-Solís, R. (**2021**). Pronóstico de precipitación en el Sahel con base en la temperatura de la superficie del mar. In IAHR (Ed.), *XXIX Congreso Latinoamericano de Hidráulica* (p. 9). AMH. <u>https://www.congresolatinohidraulica.com/</u>.

Balcázar, L., Bâ, K., Díaz-Delgado, C., Quentin, E., & Minga-León, S. (**2019**). Modelado de caudales diarios en una cuenca del sur del Ecuador con precipitación y temperatura estimadas por satélite. *Agrociencia*, *53*(4), 465–486.

Bâ, K., **Balcázar, L.**, Diaz-Mercado, V., Ortiz, F., Gómez-Albores, M., Díaz-Delgado, C., (**2018a**). Hydrological Evaluation of PERSIANN-CDR Rainfall over Upper Senegal River and Bani River Basins. *Remote Sens*. 10, 1884. <u>https://doi.org/10.3390/rs10121884</u>.

Bâ, K., Diaz-Mercado, V., **Balcázar, L**., Ortiz, F., Gómez-Albores, M., Díaz-Delgado, C., (**2018b**). Performance evaluation of satellite precipitation and its use for distributed hydrological modelling on Western Africa basins, in: *3RD International Conference On African Large River Basin Hydrology (ICALRBH)*. Alger, p. 3.

Balcázar, L., Gaona, G., Bâ, K., Minga-León, S., Mejía, D., & Díaz-Delgado, C. (**2018**). Eficiencia del modelo Cequeau utilizando Persiann y Era-Interim sobre una cuenca del sur del Ecuador. *XXV Congreso Nacional de Hidráulica*, 5.

Minga-León, S., Gómez-Albores, M. A., Bâ, K., **Balcázar, L**., Manzano-Solís, L. R., Cuervo-Robayo, A., & Mastachi-Loza, C. A. (**2018**). Estimation of water yield in the hydrographic basins of southern Ecuador. *Hydrology and Earth System Sciences Discussions*, *October*, 1–18. <u>https://doi.org/10.5194/hess-2018-529</u>.

Capítulo 1: Introducción

1.1. Generalidades

El pronóstico de caudales es importante para alertar a la población sobre posibles sequías e inundaciones. Además, puede servir de apoyo a los agricultores en la planeación de los meses de siembra (Gado Djibo et al., 2015a; Sittichok et al., 2016). Las alertas tempranas basadas en los pronósticos precisos y en plazos de tiempo largo contribuyen a la protección de la vida y a la mitigación de los daños causados por los eventos extremos (Thorncroft and Lamb, 2005). Sin embargo, se conoce que la demanda de pronósticos confiables del clima estacional, en particular el de la lluvia, sigue siendo alta (Schepen et al., 2012). Hoy en día, cualquier técnica que pueda estimar la estación húmeda del Sahel con alta confiabilidad y con pocos meses de anticipación, podría incrementar la resiliencia de la población (Gado Djibo et al., 2015b; Sittichok et al., 2016).

El Sahel es uno de los lugares semiáridos más vulnerables a la desertificación, se conoce de sequías severas en los años setenta y ochenta que afectaron a millones de personas (World Bank, 2013; Nicholson, 2013). Posteriormente a estos eventos se han realizado varios estudios para evaluar la previsibilidad de la estación lluviosa del Sahel (Badr et al., 2013; Gado Djibo et al., 2015a; Nicholson et al., 1998; Sittichok et al., 2016). La alta variabilidad

de la precipitación interanual también ha conllevado a inundaciones fuertes en años recientes (Samimi et al., 2012). Los eventos extremos de las últimas cinco décadas han incrementado la crisis humanitaria de la región (Gado Djibo et al., 2015b; Samimi et al., 2012).

En algunas regiones del mundo, los servicios nacionales/regionales de meteorología e hidrología son los encargados de realizar el pronóstico estacional (Pirret et al., 2020). En África occidental, el pronóstico de precipitación lo realiza el foro *Prévisions Climatiques Saisonnières en Afrique Soudano-Sahélienne* (PRESASS), llamado antes *Prévisions Climatiques Saisonnières en Afrique de l'Ouest* (PRESAO). Todos los años, en los meses abril-mayo, se desarrolla el foro para generar el pronóstico estacional de julio-agosto-septiembre del mismo año (Figura 1-1). El evento es convocado por el *African Centre of Meteorological Application for Development* (ACMAD) y el CRA (*Centre Regional de Formationet d' Application en Agrométórologie et Hydrologie Opérationelle -* AGRHYMET) (Pirret et al., 2020; Sittichok et al., 2016). Para el pronóstico de la lluvia utilizan la herramienta *Climate Predictability Tool* (CPT). Los resultados del pronóstico son comparados con los pronósticos del clima de centros internacionales y llegan a un consenso para presentar el pronóstico de la lluvia estacional. Sin embargo, los pronósticos del foro PRESASS no son lo suficientemente hábiles en el pronóstico de la lluvia, las sequías y las inundaciones azotan regularmente a la región (Sittichok, 2015; Sittichok et al., 2016).

En la Figura 1-1 se muestra el pronóstico PRESASS del año 2020. La precipitación del año se divide en tres partes o terciles: (1) sobre la normal, (2) cerca de la normal y (3) bajo la normal, comparada con el promedio de la serie, por lo general entre 1981 y 2010 (Pirret et al., 2020). Las áreas de color gris, verde y rojo-claro indican en dónde se espera que la precipitación estacional difiera del promedio de la serie climatológica. Los recuadros apilados verticalmente indican la probabilidad, en porcentaje, de cada tercil. En el ejemplo se observa que la precipitación es muy probable (45%) por encima de la media (color verde) en países como Senegal, sur de Mauritania, y parte de Mali, Burkina Faso, Gana,

Togo, Benín, Nigeria y Niger. En los países del sur, frente al Golfo de Guinea, la probabilidad de las precipitaciones es por debajo de la media (Figura 1-1).

Figura 1-1. Ejemplo de pronóstico del foro PRESASS para la estación húmeda del año 2020. Las letras A, N y B indican la probabilidad del pronóstico de lluvia, respectivamente, sobre, cerca o bajo la normal. (https://public.wmo.int/en/media/news/wetter-average-rainy-season-sahelian-strip).

Después de la gran sequía de los años ochenta, en el Sahel se han intensificado los estudios para prever la lluvia con anticipación (Fensholt et al., 2013; Nicholson and Kim, 1997). Desde entonces se han aplicado distintos enfoques, como modelos estadísticos y modelos de circulación general (MCGe) o la combinación de los dos (Badr et al., 2013; Gado Djibo et al., 2015a; Sittichok et al., 2016). Estos modelos están complementados con modelos hidrológicos lluvia-escurrimiento, por ejemplo, Sittichok (2015) y Sittichok et al. (2018) utilizaron el modelo semi-distribuido *Soil and Water Assessment Tool* (SWAT) para simular los caudales de la subcuenca Sirba (río Niger).

En este estudio, se utiliza el modelo hidrológico CEQUEAU (Morin, 2002) para modelar los escurrimientos con datos de pronóstico. El modelo CEQUEAU es un modelo hidrológico distribuido (MHD) orientado a procesos. El MHD CEQUEAU es desarrollado por *L'Institut National de la Recherche Scientifique-Eau, Terre et Environnement* (anteriormente INRS-EAU, ahora INRS-ETE, siglas en francés de Instituto Nacional para la Investigación Científica-Agua) de la Universidad de Quebec, Canadá (Morin, 2002; Morin and Paquet, 2007). Este modelo se ha utilizado en algunas cuencas del mundo, en los que ha respondido satisfactoriamente en los enfoques planteados (Bâ et al., 2018a, 2013b; Balcázar et al., 2019; Díaz-Mercado et al., 2015; Llanos and Bâ, 2011; Magaña-Hernández et al., 2021). Además, este modelo ha sido evaluado por la Organización Meteorológica Mundial (OMM) con otros modelos, dando resultados muy buenos en la modelación hidrológica (Askew, 1989). El objetivo del presente estudio fue modelar los escurrimientos estacionales en cuencas del Sahel, utilizando datos de pronóstico de precipitación y temperatura.

1.2. Antecedentes

Estudios recientes mencionan que las fluctuaciones de la lluvia en África occidental están relacionadas con los cambios interanuales a decadales de la temperatura de la superficie del mar (SST, por sus siglas en inglés) de los océanos Atlántico, Pacífico e Índico (Janicot et al., 2001; Sittichok et al., 2016). Específicamente el área de influencia de la SST es en la extensión más al sur de la zona de convergencia intertropical (ZCIT) (Thorncroft and Lamb, 2005). La lluvia sobre África occidental se define como monzón de África occidental (WAM, siglas en inglés de *West African Monsoon*) y la lluvia sobre el océano se produce como parte de la zona marina atlántica-ZCIT (AMI, siglas en inglés de *Atlantic Marine-ITCZ*). Las lluvias del WAM se presentan aproximadamente entre mayo y octubre (Biasutti, 2019; Folland et al., 1991), siendo el pico más grande en julio-agosto-septiembre (Bâ et al., 2018a; Thorncroft and Lamb, 2005). El WAM es alimentado por las masas de aire húmedas desde el Golfo de Guinea y se forma en esta zona de convergencia

intertropical los sistemas lluviosos de África subsahariana (Lebel et al., 2009). Janicot et al. (2001) encontraron una relación significativa entre la lluvia del Sahel y la SST del Atlántico tropical meridional y el océano Índico ecuatorial.

Algunas técnicas de agregación de predictores a escala mensual y estacional se utilizan en estudios recientes para el pronóstico de la precipitación (Folland et al., 1991; Gado Djibo et al., 2015b, 2015a; Sittichok et al., 2016). La temperatura del Atlántico, Pacífico e Índico suelen ser los principales predictores de la precipitación de África. El conjunto de datos SST se correlacionan con las lluvias observadas y luego se reducen sus dimensiones por análisis de componentes principales (ACP), análisis de correlación canónica (ACC), entre otros métodos, con el objetivo de elegir el mejor predictor de la lluvia (Gado Djibo et al., 2015a, 2015b; Sittichok et al., 2016).

Folland et al. (1991) utilizaron la SST global (2.5° x 2.5° de resolución espacial) agrupados en celdas de 10° x 10° para pronosticar la lluvia estacional del Sahel, utilizando un MCGe y dos modelos estadísticos. El coeficiente de determinación (R²) más alto fue R² = 0.52 \approx (r = 0.72) con desfase de un mes entre las series de SST y la precipitación. Una de las limitantes de este estudio es la agregación de regiones de SST muy grandes, debido a que las variaciones de SST se pueden compensar entre valores mínimos y máximos.

En otro estudio, Rowell et al. (1995) utilizaron la SST en una combinación de enfoques empíricos y modelación para estudiar las causas de la variabilidad de las precipitaciones en los meses húmedos en el norte de África tropical. Los resultados revelan que el modelo simula adecuadamente la magnitud y el patrón de las anomalías de las precipitaciones de los meses húmedos. De esta manera, se fortalece la idea de que las variaciones globales de la SST son, por lo tanto, responsables de la mayor parte de la variabilidad de las precipitaciones estacionales en esta región.

Sittichok et al. (2016) implementaron un método de regresiones graduales entre la SST (2° x 2°) del Atlántico y del Pacífico para pronosticar el WAM en la cuenca Sirba, localizada entre Niger y Burkina Faso. Para reducir las dimensiones de la SST, utilizaron algunas

técnicas, entre ellas ACP, ACC, regresión paso a paso y validación cruzada. Además, implementaron una técnica para combinar distintos pasos de tiempo (meses agrupados) para encontrar el lag óptimo. En cada iteración, los autores agregan un mes a un año calendario y comparan la SST con la lluvia de julio-septiembre. Los resultados son satisfactorios medidos con el R². Sin embargo, este método tiene la desventaja que promedia un número amplio de meses y en otros casos solo un mes para comparar con los tres meses de lluvia.

En los estudios de Sittichok (2015) y Sittichok et al. (2018), desagregaron las precipitaciones mensuales en datos diarios. Obtuvieron la lluvia diaria con el método de fragmentación propuesto por Harms y Campbell (1967, en Sittichok, 2015). Este método consiste básicamente en obtener el cociente de la lluvia mensual estacional simulada y la lluvia mensual estacional histórica, multiplicada por la lluvia diaria histórica de la estación. Los autores utilizaron estos datos para simular los escurrimientos de la cuenca Sirba con el modelo SWAT. La eficiencia de las modelaciones medidas por el criterio de Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) fue NSE = 0.487 (Sittichok et al., 2016). Considerando la clasificación de la eficiencia de los modelos hidrológicos propuesta por Moriasi et al. (2015) los resultados del estudio fueron poco satisfactorios. En un estudio posterior, Sittichok et al. (2018) obtuvieron NSE de 0.430 y 0.700 a escala anual y mensual.

La fuente principal de humedad de África occidental, llamado WAM, son el Golfo de Guinea y el océano Atlántico tropical. El impacto en el sistema WAM fue observado desde 1970 cuando el déficit de la lluvia fue asociado con una SST fría en el norte del Atlántico tropical y una SST cálida en el sur y en el ecuador. Esto promueve una ZCIT más meridional que la normal (Gado Djibo et al., 2015a). Janicot et al. (2001) observaron correlaciones variables entre la lluvia del Sahel y El Niño oscilación del sur, más conocido por sus siglas en inglés ENSO (*El Niño-Southern Oscillation*). Los eventos cálidos del ENSO están asociados tanto con un gradiente oriental de presión media a nivel del mar (MSLP, *Mean Sea Level Pressure*) entre el Pacífico tropical-oriental y el Atlántico tropical

como con un gradiente de presión hacia el norte a lo largo de la costa septentrional de África occidental.

Por otro lado, los datos de presión del aire a nivel del mar (SLP, *Sea Level Pressure*) y/o la media de SLP (MSLP), también se han utilizado en el pronóstico de las lluvias en el Sahel. Haarsma et al. (2005) explican los mecanismos físicos entre la MSLP y la precipitación del Sahara y a su vez las variaciones de la MSLP con la distribución global de la temperatura del aire (Ta). Davis (1976) observó que existe una estrecha relación entre los patrones de anomalías SST y SLP. En una subcuenca del río Niger, Gado Djibo et al. (2015a) observaron que al combinar la SLP con la Ta del norte del Pacífico tropical, la humedad relativa (RHUM, *Relative Humidity*) de la cuenca este del Mediterráneo, se generan los mejores predictores respecto con el criterio NSE. En otro estudio, Gado Djibo et al. (2015b) utilizaron la RHUM junto con otros predictores, para pronosticar las lluvias en el Sahel. Los predictores con mayor poder predictivo fueron la RHUM y la Ta del Pacífico norte y SLP del Atlántico sur, utilizando un enfoque lineal combinado de parámetros cambiantes.

En la Tabla 1-1 se presenta un resumen de los estudios en África occidental, los más representativos. Se muestra la información general, el enfoque y las principales conclusiones.

Autor	Título	Datos	Enfoque	Conclusiones
Sittichok et al. (2016)	Statistical seasonal rainfall and streamflow forecasting for the Sirba watershed, West Africa, using sea-surface temperatures	SST Atlántico, Pacífico/cuenca Sirba	Pronóstico de precipitación con modelos lineales en la cuenca Sirba	Mejores resultados obtuvieron con la SST del Pacífico (marzo-junio), la eficiencia del modelo de pronósticos de lluvia fue NSE = 0.387
Sittichok et al. (2018)	Estimation of the added value of using rainfall–runoff transformation and statistical models for seasonal streamflow forecasting	SST Atlántico/ cuenca Sirba	Pronóstico estacional de escurrimientos en la cuenca Sirba	Obtuvieron la precipitación de pronóstico con modelos directos e indirectos. Con estos datos modelaron los escurrimientos mensuales con el modelo semidistribuido SWAT. La eficiencia de la lluvia fue NSE = 0.43 y la eficiencia de los escurrimientos fue NSE = 0.70
Gado Djibo, et al. (2015a)	Linear and Non-Linear Approaches for Statistical Seasonal Rainfall Forecast in the Sirba Watershed Region (SAHEL)	SLP, RHUM, Ta, viento zonal y viento meridional/ cuenca Sirba	Pronóstico de lluvia con modelos lineales y no lineales en la cuenca Sirba	Obtuvieron mejores resultados combinando modelos lineales que con los modelos lineales. Los mejores resultados fueron con la Ta, NSE = 0.53 y 7 meses de desfase y con la humedad relativa, NSE = 0.52, desfase de 7 meses
Gado Djibo, et al. (2015)	Development and assessment of non-linear and non-stationary seasonal rainfall forecast models for the Sirba watershed, West Africa	SST, RHUM y Ta.	Pronóstico de lluvia con modelos probabilísticos basados en punto de cambio (métodos bayesianos).	Los mejores resultados fueron con la Ta con cambios en los parámetros en función de la magnitud de la precipitación. La eficiencia del modelo fue NSE = 0.76
Haarsma et al. (2005)	Sahel rainfall variability and response to greenhouse warming	MSLP, Ta del Sahara/África occidental	Relación de la lluvia del Sahel con la variabilidad de la temperatura del aire.	La variabilidad de las lluvias del Sahel están relacionadas con la temperatura del aire. La sequía de los años setenta y ochenta se observaron anomalías frías, que se pueden dar debido a los aerosoles, gases de efecto invernadero, entre otros forzamientos externos

Tabla 1-1. Estudios hidrometeorológicos realizados en el Sahel (pronóstico de precipitación y de escurrimientos).

Autor	Título	Datos	Enfoque	Conclusiones
Sittichok et al. (2016)	Statistical seasonal rainfall and streamflow forecasting for the Sirba watershed, West Africa, using sea-surface temperatures	SST Atlántico, Pacífico/cuenca Sirba	Pronóstico de precipitación con modelos lineales en la cuenca Sirba	Mejores resultados obtuvieron con la SST del Pacífico (marzo-junio), la eficiencia del modelo de pronósticos de lluvia fue NSE = 0.387
Misra (2003)	The Influence of Pacific SST Variability on the Precipitation over Southern Africa	SST Pacífico/ sur de África	Teleconexiones entre la SST del Pacífico en las lluvias del sur de África.	La variación temporal de la precipitación sobre el sur de África es un poco independiente de la SST del Pacífico y está más relacionado con el desplazamiento de la célula de Walker haca el oeste
Janicot et al. (2001)	Summer Sahel-ENSO teleconnection and decadal time scale SST variations	SST/ África occidental	Teleconexiones entre la lluvia del Sahel con la SST ENSO.	Encontraron relaciones significativas entre la SST-ENSO con las lluvias del Sahel y con la costa de del Golfo de Guinea. Existen cambios en en la correlación los cuales pueden deberse a la asociación con el movimiento latitudinal de la ZCIT.

1.3. Justificación

Se conoce que las variables de superficie, como precipitación y temperatura, están asociadas por medio de teleconexiones con otras variables físicamente alejadas (Hatzaki et al., 2007; Herein et al., 2017; Rowell, 2001). Actualmente, en internet están disponibles un número considerable de datos estimados por satélite, los cuales pueden servir como predictores de otras variables, por ejemplo: la temperatura de la superficie del mar, la presión al nivel del mar, la humedad relativa y los índices Niño. Estos datos son útiles para comprender la dinámica de los fenómenos climáticos, la variabilidad del clima y por su puesto las teleconexiones (Gado Djibo et al., 2015a; Nicholson, 2012; Sittichok et al., 2016).

Por otro lado, el producto de satélite *Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks - Climate Data Record* (PERSIANN-CDR) (Ashouri et al., 2016) tiene un conjunto de datos de precipitación histórica de 38 años, a 0.25° x 0.25° de resolución espacial y frecuencia diaria. El conjunto de datos ERA5 de *European Centre for Medium-Range Weather Forecasts* (ECMWF) (Hersbach et al., 2020) es la quinta generación de datos de reanálisis, el producto de temperatura del aire Ta2m-ERA5 tiene un registro histórico desde el año 1979 al presente, a 0.25° x 0.25° de resolución espacial y frecuencia horaria. La resolución de los datos de satélite utilizados en este estudio son aceptables para estudios regionales (Ashouri et al., 2015; Dee et al., 2011). Los datos PERSIANN-CDR y ERA-Interim (predecesor de ERA5), se han validado anteriormente por Bâ et al. (2018a) y Bâ et al. (2018b) en cuencas del Sahel. Los resultados son satisfactorios a muy buenos, además, considerando los criterios de Moriasi et al. (2015), la eficiencia de los modelos hidrológicos con estos datos es muy buena en la cuenca del río Bani (alto Niger) y subcuencas del río Senegal (Bâ et al., 2018a, 2018b, 2018c).

Las investigaciones previas en el Sahel, se han enfocado en estudios sociales, ambientales y del clima en general. Varios estudios de pronóstico de lluvias se han realizado en el Sahel con el propósito de anticipar las lluvias del WAM, y muy pocos estudios se han enfocado

en el pronóstico de escurrimientos (Fensholt et al., 2013; Sittichok, 2015; Sittichok et al., 2018, 2016). Además, los modelos son poco satisfactorios de acuerdo con la clasificación de los criterios de Moriasi et al. (2015), esto puede deberse a varios factores, por ejemplo, la alta variabilidad espaciotemporal de la precipitación, el tipo de los predictores y los métodos utilizados (Folland et al., 1991; Gado Djibo et al., 2015b; Sittichok et al., 2016). Por otro lado, los pronósticos realizados con los MCGe si bien reproducen los fenómenos, tienen la limitante de la escala, por lo que no es tan útil en áreas pequeñas y estudios regionales (Sittichok et al., 2016).

En este estudio se utilizan variables océano-atmosféricas y métodos estadísticos lineales y no lineales para predecir la precipitación y temperatura del Sahel occidental. Además, se complementa con la modelación de los escurrimientos diarios de los ríos Bani (alto Niger) y subcuencas del río Senegal. La estimación eficiente del WAM es una prioridad para millones de personas del Sahel, las cuales se dedican principalmente a la agricultura de subsistencia (Gado Djibo et al., 2015b; Sittichok et al., 2016). La previsión de los caudales ayudará a la toma de decisiones anticipadas para afrontar el déficit del agua en la región. Se utilizan modelos estadísticos con alto poder predictivo. Por otro lado, se utilizan fuentes de datos accesibles de productos de satélite (Guo et al., 2016; Hersbach et al., 2020; Reynolds and Smith, 1994) y software libre como el lenguaje de programación R, el editor RStudio, el SIG Qgis y el SIG académico Idrisi/TerrSet (Eastman, 2016; QGIS.org, 2021; R Core Team, 2021; RStudio Team, 2021). Los recursos informáticos/datos accesibles son de gran utilidad para el usuario final, puesto que es más fácil reproducir la investigación, editar y mejorar los modelos de este estudio.

1.4. Hipótesis

Es posible pronosticar los escurrimientos estacionales a mediano plazo en subcuencas del Sahel, utilizando métodos estadísticos y predictores océano-atmosféricos en un modelo hidrológico distribuido.

1.5. Objetivos

1.5.1. Objetivo general

El objetivo principal de este estudio es pronosticar los escurrimientos estacionales con al menos seis meses de anticipación en cuencas del Sahel utilizando modelos estadísticos y variables océano-atmosféricas, para prever la magnitud de los escurrimientos en un modelo hidrológico distribuido.

1.5.2. Objetivos específicos

Para cumplir con el objetivo principal se exponen los siguientes objetivos específicos:

- a) Evaluar variables océano-atmosféricas de productos de satélite (SST, RHUM, MSLP) e índices atmosféricos (índices Niño), con la finalidad de utilizarlos como posibles predictores de precipitación y temperatura.
- b) Clasificar la SST, RHUM y MSLP del Atlántico en regiones, con la finalidad de encontrar las regiones óptimas que tienen mejor teleconexión con la precipitación y temperatura en las subcuencas de los ríos Bani y Senegal.
- c) Implementar métodos estadísticos lineales y no lineales, utilizando variables océano-atmosféricas como variables independientes para pronosticar la precipitación y temperatura de las subcuencas Bani (alto Niger) y Senegal.
- d) Validar la precipitación y temperatura de pronóstico con los datos observados de las estaciones meteorológicas para aumentar el grado de confiabilidad de los modelos estadísticos.
- e) Desagregar la precipitación y temperatura de pronóstico mensual en series diarias, utilizando datos históricos y métodos autorregresivos, con la finalidad de utilizarlas en la modelación hidrológica.

f) Modelar los escurrimientos diarios estacionales utilizando la precipitación y temperatura de pronóstico con el modelo hidrológico distribuido CEQUEAU, para prever los escurrimientos de los próximos meses, en cuencas de los ríos Bani y Senegal.

El documento está estructurado como a continuación se describe. En el capítulo 2 se definen los conceptos generales de las variables del clima involucradas en el pronóstico de precipitación y temperatura. En el capítulo 3 se describe el área de estudio, el clima de la región, y la cobertura y uso del suelo. En el capítulo 4 se describen los métodos para el pronóstico de precipitación y temperatura: evaluación de posibles predictores, implementación de modelos lineales y no lineales, el método para la desagregación de datos y el método para modelar los escurrimientos. En el capítulo 5 se presentan los resultados de la investigación, se hace énfasis en los modelos que tuvieron mejores rendimientos en los pronósticos de precipitación y de temperatura. En el capítulo 6 se discuten los resultados y se comparan con estudios previos. En el capítulo 7 se describen las principales conclusiones y recomendaciones que se llegó con el estudio, derivadas de los objetivos planteados. Finalmente, en el último apartado se presentan las referencias de estudios previos, que son el soporte científico de los métodos del presente estudio.

Capítulo 2: Marco teórico

En este apartado se definen los conceptos generales del clima y las variables que caracterizan las lluvias de África occidental. Se analizan los posibles predictores que más influyen en la precipitación y temperatura del Sahel. Además, se hace una descripción general de los métodos estadísticos para el pronóstico de precipitación y temperatura.

2.1. El clima

El clima es el estado promedio del tiempo atmosférico, caracterizado por estadísticas a largo plazo de los valores medios de los elementos meteorológicos. El tiempo para caracterizar el clima puede abarcar desde meses hasta decenas o cientos de años. El periodo promedio habitual, recomendado por la Organización Mundial de Meteorología (OMM), es de 30 años (IPCC, 2013; Meteoterm, 2018; OMM N°100, 2011). El clima es un factor clave en la planificación de las actividades y en la toma de decisiones (OMM N°100, 2011).

Los tópicos del clima, hoy en día, tal vez son los campos más estudiados en el campo de las ciencias de la Tierra. Discusiones y reportes del calentamiento global, el cambio climático, las influencias de El Niño y el monitoreo de fenómenos climáticos aparecen muy frecuente

en las noticias. La importancia del clima fue reconocida cuando el grupo intergubernamental de expertos sobre el cambio climático (IPCC, por sus siglas en inglés) y otros actores defensores del clima fueron galardonados con el Premio Nobel de la Paz (Hidore et al., 2010).

Las variables utilizadas para caracterizar el clima son la temperatura del aire, la precipitación, la presión atmosférica, la humedad, el punto de rocío, la luz solar y los vientos que son característicos de un lugar (Hidore et al., 2010; IPCC, 2013). Las variables del clima se miden en estaciones meteorológicas. Miles de estas se localizan alrededor del mundo, para registrar al menos una de las variables mencionadas. Desafortunadamente, la distribución de las estaciones no cubren toda la Tierra. Grandes áreas cuentan con una red escasa de estaciones meteorológicas (Hidore et al., 2010).

Existen otros instrumentos para medir las variables de la atmósfera, por ejemplo: radiosondas localizadas en globos, aviones, plataformas satelitales y otros vehículos. Las radiosondas miden, por ejemplo, la temperatura a distintas alturas. Los sensores remotos implementados en las plataformas satelitales, capturan la información en infrarrojos y microonda. Estos datos se procesan y se obtienen productos de satélite que cubren grandes extensiones de la Tierra (Ashouri et al., 2016; Huffman et al., 2010). Desde 1960, los satélites monitorean la atmósfera y la superficie de la Tierra, los sensores de los satélites capturan la radiación de los elementos para transformar esa información en datos de clima (Ashouri et al., 2010).

En los océanos de todo el mundo, se localizan boyas para medir la temperatura del mar, la velocidad del viento, la temperatura del aire, entre otras variables. Existen programas para el monitoreo de los cambios en el mar. El programa *Prediction and Research Moored Array in the Tropical Atlantic* (PIRATA), observa la SST, la temperatura del aire, la velocidad del viento en el océano Atlántico (Bourlès et al., 2019).

2.1.1. El viento

El viento es el movimiento horizontal del aire sobre la Tierra, mientras que las corrientes de aire se refieren al movimiento vertical (Hidore et al., 2010; Llamas, 1993). El viento transfiere el calor alrededor de la superficie de la Tierra y lleva el vapor de los océanos a los continentes. Las dos principales características del viento son dirección y velocidad. La dirección del viento es la dirección desde donde sopla el viento, considerando el norte como referencia, el viento que sopla de este a oeste, es un viento a 90°. La aceleración del viento viene dada por la suma de fuerzas del gradiente de presión más la fuerza de Coriolis más las fuerzas de fricción más las fuerzas rotacionales de la Tierra (Hidore et al., 2010).

2.1.2. Temperatura del aire

La temperatura mide la energía cinética del movimiento de moléculas de una sustancia, es decir, la energía presente en dicha sustancia. La temperatura del aire es la variable más utilizada para medir el estado de la atmósfera. El estudio de la temperatura atmosférica considera el flujo y variación de la energía de un lugar a otro (Hidore et al., 2010). La temperatura máxima del día suele ser pasado las 14 horas y no al medio día. Por la tarde, la Tierra sigue absorbiendo energía hasta que alcanza un equilibrio entre ganancias y pérdidas. Después hay un descenso rápido hasta las 20 horas y luego un descenso lento hasta el amanecer (Llamas, 1993). La temperatura de un lugar cambia durante el año por los movimientos de rotación y traslación de la Tierra. La temperatura es mayor entre los trópicos y a nivel del mar y menor en latitudes y altitudes altas, debido a la incidencia de la radiación, cobertura de nubes entre otros. La intensidad de la radiación es máxima en latitudes donde la radiación solar es perpendicular a la superficie. La intensidad de la radiación decrece de norte a sur del ecuador así como su ángulo de incidencia decrece (Hidore et al., 2010). La temperatura del aire se mide con un termómetro expuesto al ambiente a 1.2 y 2 m de altura desde el suelo, protegido de la lluvia y la radiación solar directa. Sin embargo, esta definición no se puede utilizar como definición de la magnitud termodinámica propiamente dicha, pero sirve para la mayoría de las aplicaciones. En

meteorología se utiliza, por lo general, la temperatura en grados Celsius (Aparicio, 2015; OMM N°8, 2010).

2.1.3. Precipitación

Desde el punto de vista hidrológico, la precipitación es la fuente primaria del agua sobre la superficie terrestre (Aparicio, 2015). La precipitación incluye la lluvia, la nieve granizo y sus modificaciones, mediante los cuales el agua precipita (Llamas, 1993). La formación de la precipitación requiere la elevación de una masa de aire en la atmósfera de tal manera que se enfríe y parte de su nubosidad se condense. Los tres mecanismos principales para la elevación de masas de aire son: (1) la elevación frontal, donde el aire caliente es elevado sobre el aire frío; (2) la elevación orográfica, mediante la cual una masa de aire se eleva por encima de una cadena montañosa; y (3) la elevación convectiva, donde el aire se arrastra hacia arriba por una acción convectiva (Chow et al., 1994).

Los equipos tradicionales para medir la precipitación son pluviómetros y pluviógrafos localizados en estaciones meteorológicas, los equipos son cilíndricos graduado de área transversal (Aparicio, 2015). También existen sensores o equipos digitales con el mismo funcionamiento que tienen los equipos tradicionales. Si embargo, los equipos digitales tienen la ventaja de almacenar y enviar, vía remota, los datos de la estación a un servidor. Además, los equipos digitales se pueden regular para medir la precipitación a distintos pasos de tiempo. Otra fuente de precipitación son los datos estimados por sensores remotos ubicados en plataformas satelitales que rodean la Tierra. Las estimaciones de satélite son de cobertura global y resoluciones espacio-temporales relativamente finas (Hong et al., 2007; Sorooshian et al., 2000). Los datos de los productos de satélite son una alternativa para el déficit de datos observados y cubren áreas remotas, en donde no existen estaciones meteorológicas (Bâ et al., 2018a).

2.1.4. Humedad relativa

La humedad relativa es la relación entre la masa de vapor del agua contenida en la unidad de volumen del aire y la de vapor de agua que sería necesario para saturar este volumen a la misma temperatura. Normalmente la humedad relativa se expresa en porcentaje (CONAGUA, 2010). En otras palabras, la humedad relativa se define como la relación entre la presión de vapor del agua real y la presión de vapor de saturación del agua líquida o el hielo a la misma temperatura (IPCC, 2013). La humedad relativa se mide por medio del higrógrafo, el cual está constituido por un haz de cabello humano. El haz es sensible al grado de humedad, por lo que se relaciona el cambio de humedad con el cambio de longitud del cabello (Aparicio, 2015).

2.1.5. Presión atmosférica

La presión atmosférica sobre una superficie dada es la fuerza por unidad de área que ejerce sobre dicha superficie, es decir, el peso de la atmósfera por encima de la superficie. La presión es igual al peso de una columna vertical de aire, que llega hasta el límite exterior de la atmósfera, sobre una proyección horizontal de la superficie (OMM N°8, 2010). Las diferencias de presión atmosférica se debe al movimiento interno en la atmósfera y a la diferencia de calor. La diferencia de presión sobre el espacio produce un gradiente y un movimiento del aire a lo largo del gradiente de alta presión a baja presión. Si no ocurren otras fuerzas, el aire en la Tierra podría moverse en línea recta desde lugares de alta a baja presión. La velocidad a la que se mueve el aire depende de la inclinación del gradiente. Cuando se producen pequeñas diferencias de presión sobre grandes superficies, una pendiente baja da lugar a vientos débiles (Hidore et al., 2010).

Superficie de referencia para los análisis en altitud

Las superficies isobáricas constituyen el tipo principal de superficie de referencia para representar y analizar las condiciones que imperan en la atmósfera libre por encima de amplias zonas. Las superficies isobáricas para representar y analizar las condiciones en la atmósfera inferior serán las de 1000 hectopascales (hPa), 850 hPa, 700 hPa, 500 hPa, …, y 100 hPa (OMM N°485, 2017).

La presión del aire a nivel del mar se define como la presión atmosférica a nivel medio del mar (definida como 760 mmHg ~1013.24 hPa), medida directamente o, más comúnmente, determinada empíricamente a partir de la presión observada en una estación. En regiones por encima del nivel del mar, es habitual reducir la presión superficial observada al valor de referencia del nivel del mar, si la temperatura del aire es correspondiente con la del nivel del mar. En la práctica, se utiliza la temperatura media de las 12 horas anteriores, en lugar de la temperatura actual. Las variaciones de estos valores son bastante pequeñas, por ejemplo, la presión más alta observada es de 813.05 mmHg ~1083.98 hPa (en el centro de Siberia) y la más baja de 657.86 mmHg ~877.07 hPa (en un tifón en el Pacífico sur). Las pequeñas variaciones de presión que existen determinan en gran medida los patrones de viento y tormentas de la Tierra (AMS, 2012; Encyclopedia-Britannica, 2019; Hidore et al., 2010).

En la Figura 2-1 se observa la relación entre presión y altitud expresada en hPa por kilómetro. Cerca del nivel del suelo, la presión varía entre 900 y 1000 hPa. Los datos de los productos de humedad, temperatura y presión, se presentan a distintas presiones (altitud), por ejemplo: 200, 500, 750, 1000 hPa.

Figura 2-1. Relación entre presión atmosférica y altitud, fuente: http://www.atmo.arizona.edu/students/.

2.2. Factores del clima local

2.2.1. Monzón de África occidental

El monzón de África occidental (WAM, siglas en inglés de *West African Monsoon*), es el resultado de la interacción de un sistema atmósfera-océano-superficie, caracterizado por lluvias de verano (julio-agosto-septiembre) e inviernos secos (Chang et al., 2005; Janicot et al., 2011). El WAM nace de la diferencia de temperatura de verano entre el aire cálido del continente africano y el aire fresco y húmedo del océano Atlántico. Las masas de aire húmedas son arrastradas desde el Golfo de Guinea hacia el continente en un flujo desde el

sureste. Estas chocan con las masas de aire caliente y son empujadas por el viento del noreste o vientos alisios llamados Harmattan. Se forman así en esta zona de convergencia intertropical de los sistemas lluviosos de África subsahariana (Lebel et al., 2009).

El WAM está directamente relacionado con los patrones de lluvia en la región del Sahel (Gado Djibo et al., 2015a). Al igual que con todos los sistemas monzónicos, la evolución de las condiciones del océano y el continente son de importancia crucial para determinar la naturaleza del WAM y su variabilidad. En particular, los mecanismos propuestos para explicar los diversos aspectos de la evolución de las lluvias deben ser investigados más a fondo en el contexto del WAM (Chang et al., 2005). Los principales patrones del WAM son un gradiente negativo de precipitaciones desde la costa de Guinea, en el sur, hasta el desierto del Sahara, en el norte, y una secuencia bien marcada de la temporada seca y húmeda, ambas controladas por la migración de la ZCIT (Vischel et al., 2019).

2.2.2. Corrientes marinas

Son movimientos de masa de agua marina en un sentido determinado, producido por factores diversos, como la acción del viento, las mareas, y las diferencias de densidad, temperatura y salinidad (termohalina) de dos masas de agua del mar. La temperatura y la salinidad del mar determinan su densidad (Hidore et al., 2010). La termohalina transforma las aguas superficiales, de baja densidad en aguas intermedias y profundas de mayor densidad y las devuelve a la parte superior. Las corrientes son impulsadas por diferencia de densidad y temperatura, y es afectada en todos los niveles del océano, desde la superficie hasta el fondo (Fernández López, 2018; IPCC, 2013).

2.2.3. Vientos alisios

El desigual calentamiento de la Tierra produce masas de aire con distinta temperatura. Esta desigualdad de distribución térmica crea una circulación a gran escala, la circulación general del aire. Los vientos alisios ocupan un cinturón latitudinal del NE en el hemisferio

norte y del SE en el hemisferio sur, que se extiende, según la estación, desde cerca del ecuador a 30-35° al norte y al sur. Los vientos son persistentes sobre extensas regiones, generalmente en la atmósfera inferior, que soplan desde un anticiclón subtropical hacia regiones ecuatoriales (WMO Nro. 182, 1992). El Harmattan es un viento alisio de África occidental, se caracteriza por ser frío y seco. Estos vientos están controlados por el gradiente de presión entre la depresión térmica y los anticiclones del norte de África. Los cambios en los vientos alisios Harmattan tienen efecto en el WAM (Nicholson, 2012; Sultan and Janicot, 2003).

2.3. Teleconexiones

Se llama teleconexión, a la relación de una variable océano-atmosférica con una variable de superficie que se encuentra físicamente alejada (Janicot et al., 2001; Rowell, 2001; Sittichok, 2015; Thorncroft and Lamb, 2005).

Para comprender las predicciones estacionales de las regiones tropicales es importante conocer las teleconexiones ecuatoriales entre las variables océano-atmosféricas y las variables de superficie (Rowell, 2001). Las teleconexiones cumplen un papel importante en la climatología e hidrología (Sittichok, 2015). El término de teleconexión se refiere al vínculo de variables climáticas entre dos áreas físicamente alejadas. Generalmente se refiere a la circulación atmosférica a escala continental con efectos climáticos en áreas puntuales o regionales (Hatzaki et al., 2007; Herein et al., 2017; Rowell, 2001). Es bien conocido el mecanismo de las teleconexiones entre el ENSO, las SST del Atlántico y las lluvias de verano en el Sahel (Janicot et al., 2001; Nicholson, 2000). El ENSO influye en la variabilidad de la SST del Atlántico tropical y el WAM (Janicot et al., 2001; Thorncroft and Lamb, 2005). La evidencia de la teleconexión entre el ENSO y la lluvia del Sahel es ampliamente discutido en varios estudios (Janicot et al., 2001). Sin embargo, en un clima cambiante, la fuerza de las teleconexiones podría cambiar, para caracterizar estos cambios

de las teleconexiones se utilizan los coeficientes de correlación tomados sobre el conjunto que evoluciona temporalmente en cualquier instante de tiempo (Herein et al., 2017).

2.4. Zona de convergencia intertropical

La zona de convergencia intertropical o ZCIT es una franja de bajas presiones, fuerte convección e importantes precipitaciones, próxima al ecuador, en que los vientos alisios del noreste se encuentran con los del sureste. Además, se produce una suave corriente de aire ascendente (Hidore et al., 2010). El ciclo medio estacional de la lluvia sobre África occidental, corresponde con el desplazamiento sur-norte-sur de la ZCIT, en la zona ecuatorial, que se caracteriza por una sucesión de fases activas y pausas en la actividad convectiva (IPCC, 2013; Janicot et al., 2011).

En la ZCIT hay menos evaporación del océano a lo largo del ecuador hasta los trópicos de Cáncer y Capricornio. La razón es que el aire ecuatorial es bastante húmedo, y la presión de vapor en la superficie del agua es menor. Las temperaturas del mar no son tan altas cerca del ecuador como lo son cerca de los trópicos. Las adiciones de agua dulce de las precipitaciones y de los ríos grandes enfrían el océano. Además, llega a la superficie menor radiación solar como resultado de la mayor cobertura de nubes, lo que reduce aún más la temperatura del agua (Hidore et al., 2010).

2.5. Variabilidad del Atlántico

Muchos fenómenos están relacionados con la variabilidad del Atlántico tropical (TAV, siglas en inglés). El Atlántico tropical tiene influencia en las sequías, inundaciones, ciclones tropicales y olas de calor marino. El TAV implica procesos acoplados océano-atmósfera y sus interacciones, en particular, las fluctuaciones de los vientos alisios, la SST y las precipitaciones. También existe un importante forzamiento externo del TAV por parte del ENSO, la oscilación del Atlántico norte (NAO) y el Anticiclón del Atlántico sur. La

variabilidad interanual del Atlántico tropical puede describirse en términos de dos modos climáticos principales: (1) el modo zonal del Atlántico (AZM, por sus siglas en inglés) también conocido como dipolo del Atlántico y (2) el modo meridional del Atlántico. Un AZM positivo también se asocia con un inicio tardío del WAM, aunque la SST del Atlántico oriental norte de alguna manera favorece. El AZM se lo conoce comúnmente como El Niño del Atlántico meridional (AMM, por sus siglas en inglés) se caracteriza por un gradiente ecuatorial cruzado de anomalías SST y anomalías del viento. Los patrones y estacionalidad de los modos se representan en la. Una fase cálida del AZM desplaza la zona de convergencia intertropical (ZCIT) de forma anómala hacia el sur durante los meses de junio y agosto, aumentando las precipitaciones en el Golfo de Guinea. Un AZM positivo también se asocia con un inicio tardío de la WAM, aunque la SST del Atlántico norte tropical oriental también desempeña un papel en esas circunstancias (Foltz et al., 2019).

La variabilidad multidecadal del Atlántico (AMV, por sus siglas en inglés) articula las precipitaciones en el Sahel mediante su control de la ZCIT del Atlántico (Foltz et al., 2019). En la Figura 2-2 se presenta un esquema de los componentes de la variabilidad del Atlántico.

Figura 2-2. Esquema de los componentes de la variabilidad del Atlántico, tomado de Foltz et al. (2019).

2.5.1. Predicción y pronóstico climático

La predicción, en general, es un proceso de estimación de datos la cual tiene una probabilidad de ocurrencia. En la predicción no se tiene un elemento de tiempo. Los métodos de predicción son diversos, desde un listado de factores que pueden influir en los acontecimientos hasta modelos matemáticos sofisticados. Por ejemplo, la estimación de un evento extremo con periodo de retorno establecido en términos probabilísticos. El pronóstico climático estima las condiciones meteorológicas del futuro de un lugar y en un momento dado en situaciones de incertidumbre. El pronóstico se fundamenta en la estadística y proyecciones. Los pronósticos son herramientas importantes en la toma de decisiones (Heizer and Render, 2010; IPCC, 2013; Stock and Watson, 2012).

El pronóstico de la precipitación estacional es altamente desafiante. Generalmente, estos se realizan con modelos estadísticos y dinámicos o la combinación de los dos (Schepen et al., 2012). Los dos tipos de modelos tienen fortalezas diferentes, y su combinación tiene el potencial de aumentar la habilidad del pronóstico. Considerando cualquier método, los modelos pueden cambiar su habilidad de predicción en diferentes lugares y estaciones climáticas. Los modelos estadísticos tienen la ventaja de ser simples de implementar y operar (Sittichok, 2015). Estos modelos se basan en relaciones estacionarias entre los predictores y la variable dependiente. La principal preocupación con los modelos estadísticos se debe a la dependencia de las relaciones estacionarias entre la variable dependiente y las variables independientes, lo que no está garantizado en un clima extremadamente cambiante (Gado Djibo et al., 2015a; Schepen et al., 2012). Sin embargo, estos modelos pueden resultar de gran utilidad a la hora de tomar decisiones (Gado Djibo et al., 2015b; Sittichok, 2015).

Por otro lado, los modelos dinámicos se basan en la interacción atmósfera-superficieocéano para explicar las no linealidades y relaciones de retroalimentación en estas interacciones. Los pronósticos dinámicos se realizan mediante la calibración de datos originales de un MCGe y son adaptables a los cambios climáticos. Sin embargo, los modelos basados en MCGe tienen el inconveniente de la escala, y se tienen que afinar para estudios locales (Schepen et al., 2012). Los modelos estadísticos se han utilizado ampliamente en todo el mundo para pronosticar el clima estacional (Barnston et al., 1996; Folland et al., 1991; Schepen et al., 2012).

2.6. Predictores

Los predictores son aquellas variables independientes que explican el fenómeno de estudio, también se las llama covariables o variables explicativas (Gado Djibo et al., 2015a). Los predictores están relacionados físicamente con las variables de superficie a través del tiempo por medio de teleconexiones (Badr et al., 2013; Vischel et al., 2019). Los predictores pueden ser variables de superficie, atmosféricas u oceánicas. Se conoce ampliamente que la SST, la SLP (MSLP) y los índices Niño, influyen sobre las lluvias a nivel global. En el pronóstico de lluvia se utiliza principalmente la SST (Gado Djibo et al., 2015a; Samimi et al., 2012; Sillmann et al., 2017; Sittichok et al., 2016).

2.6.1. Temperatura de la superficie del mar

La temperatura de la superficie del mar, más conocida por sus siglas en inglés (SST, *Sea Surface Temperature*) representa la temperatura de los primeros centímetros del agua de los océanos (Figura 2-3). La SST influye en el clima, la formación de tormentas, así como en la vida vegetal y animal de los océanos. Similar a la superficie terrestre, la SST es más cálida en los trópicos y más fría conforme se acerca a los polos (Hidore et al., 2010). Las corrientes marinas se comportan como ríos gigantes, estas mueven el agua caliente y fría alrededor de los océanos del mundo. Algunas de estas corrientes fluyen en la superficie, la energía de las corrientes es observada por los sensores satelitales y posteriormente son representadas en imágenes SST (National Centers for Environmental Information, 2016).

Figura 2-3. Temperatura media de la superficie del mar, octubre 2018.

2.6.2. Índices oceánicos

2.6.2.1. Índice oscilación del sur

El Niño oscilación del sur, más conocido por sus siglas en ingles (ENSO, *El Niño-Southern Oscillation*), es utilizado ampliamente para estudiar los patrones de lluvia, el cambio del clima y sus efectos socioeconómicos (McGregor and Ebi, 2018; McPhaden et al., 2009; Nicholson and Kim, 1997). Para caracterizar la naturaleza del ENSO se utilizan las anomalías de SST de regiones del Pacífico tropical (Figura 2-4) (Trenberth and Stepaniak, 2001). El término "El Niño" se refería inicialmente a una corriente de aguas cálidas que recorren periódicamente a lo largo de la costa de Perú y Ecuador, alterando la pesca local (Hidore et al., 2010). En la actualidad, el ENSO se refiere al calentamiento del océano Pacífico tropical, en un contexto más general, el ENSO es el colapso de la circulación de Walker. Este fenómeno está asociado con cierta fluctuación de un patrón global de presiones en la superficie tropical y subtropical denominado oscilación del sur. El ENSO tiene una interacción océano-atmósfera, cuya escala de tiempo es aproximadamente, entre dos y siete años. Su presencia suele determinarse en función de la anomalía de presión en

superficie entre Tahiti y Darwin (Océano Pacífico) y de las temperaturas superficiales del mar en la parte central y oriental del Pacífico ecuatorial (Hidore et al., 2010; IPCC, 2013).

Figura 2-4. Regiones del Pacífico tropical de los índices El Niño: Niño1+2, Niño3, Niño3.4 (ONI) y Niño4, sobre una imagen de anomalía de SST.

Las fases del ENSO son conocidas como El Niño (la SST del Pacífico tropical es cálida), La Niña (la SST del Pacífico tropical es fría) y neutral (sin SST cálida o fría) (Adams et al., 2014; Chen et al., 2001; Kiem and Franks, 2001). Durante un episodio de El Niño, los vientos alisios se debilitan, reduciendo el flujo ascendente y alterando las corrientes oceánicas. Esto aumenta la temperatura superficial del mar en más de 7 °C en el ecuador, lo cual debilita más a los vientos alisios. Este fenómeno afecta considerablemente los patrones del viento y la precipitación global. Sus efectos influyen en el clima del Pacífico y en muchas otras partes del mundo mediante teleconexiones en toda la extensión del planeta (Hidore et al., 2010; IPCC, 2013). La fase fría de ENSO se denomina La Niña, caracterizado por un enfriamiento de la SST en el Pacífico ecuatorial (IPCC, 2013).

La evolución y ocurrencia de los eventos ENSO son monitoreados con la ayuda de diferentes índices, por ejemplo: índice oscilación del sur (SOI, por sus siglas en inglés), Niño1, Niño1+2, Niño3, Niño4, Niño3.4, índice Trans-Niño (TNI, por sus siglas en inglés),

etc. Los índices Niño son derivados de la SST utilizando diferentes áreas del Pacífico ecuatorial (Kiem and Franks, 2001).

La región Niño1+2 se encuentra frente a las costas de Ecuador y Perú y se extiende hasta las islas Galápagos, es la región más pequeña de El Niño (Figura 2-4). El Niño1+2 es el primero en calentarse, reacciona rápidamente a las variaciones estacionales. La región Niño3 se localiza en el Pacífico central-este (Figura 2-4). El Niño3 tiene mayor variación de temperatura que las otras regiones y reacciona menos a los impactos continentales. La región Niño4 se localiza en el Pacífico central-oeste (Figura 2-4). Las precipitaciones altas en el sudeste asiático se explica por el índice Niño4. Los cambios de SST en la región Niño4 están relacionados con cambios intensos del gradiente de temperatura este-oeste a lo largo de la línea ecuatorial. La región Niño3.4 tiene áreas parciales de los índices Niño3 y Niño4 del Pacífico central (Figura 2-4). El índice Niño3.4 tiene mayor poder explicativo para describir la evolución del ENSO, puesto que refleja mejor los eventos históricos. (Abdolrahimi, 2016; IRI, 2020a; McGregor and Ebi, 2018; Trenberth et al., 2000). El Niño tiene efectos globales (Figura 2-5). En un año Niño, el Sahel y África del sur son más secos con respecto a un año típico. Por el contrario, cuando se presenta el fenómeno de La Niña (Figura 2-6), el Sahel y África del sur reciben más lluvia que el promedio histórico (Anderson, 2018).

Figura 2-5. Efecto de El Niño en los patrones de lluvia global. fuente: International Research Intitutute for Climate and Society (IRI). https://blogs.ei.columbia.edu/2018/07/27/enso-la-nina-food-security/.

Figura 2-6. Efecto de La Niña en los patrones de lluvia global. Fuente: International Research Intitutute for Climate and Society (IRI). https://blogs.ei.columbia.edu/2018/07/27/enso-la-nina-food-security/.

El SOI muestra el desarrollo y la intensidad de los eventos El Niño o La Niña en el océano Pacífico. El SOI es calculado a partir de fluctuaciones mensuales o estacionales de la presión del aire superficial del Pacífico, en la región Tahiti (Pacífico central sur) y Darwin (norte de Australia, océano Índico). Valores menores a -8 indican presencia de El Niño y mayores a +8 indican presencia de La Niña (IRI, 2020b; Sittichok, 2015). La Figura 2-7 representa los datos SOI del *Bareau of Meteorology* del Gobierno de Australia. Estos datos se encuentran disponibles en <u>http://www.bom.gov.au/climate/current/soihtm1.shtml</u>.

Gilbert Walker a mediados de 1920 identificó la relación entre la presión superficial del aire entre los océanos Pacífico e Índico. Encontró que muchas variaciones climáticas globales estaban correlacionadas con la oscilación del sur, un movimiento de vaivén a gran escala de la SLP entre el lado oriental y occidental del Pacífico tropical (IRI, 2020c).

La SLP es relativamente alta en el Pacífico central-sur (por ejemplo en Tahiti) y relativamente baja sobre el océano Índico y el norte de Australia (por ejemplo en Darwin). Por lo general, con un transporte de aire neto a baja latitud de este a oeste (los vientos alisios del este). Cada pocos años la diferencia de SLP entre el este y el oeste se debilita; en consecuencia, las interrelaciones se debilitan y a menudo hay sequía en la India y Australia. Las correlaciones de la precipitación monzónica con la oscilación del sur fueron establecidas por Walker y colaboradores a mediados de 1920 (IRI, s/f-c). Sin embargo, Walker no relacionó la oscilación del sur con El Niño. Jacob Bjerknes determinó la relación entre El Niño y la oscilación del sur, actualmente conocido como ENSO (IRI, 2020b).

Existen diferentes métodos para calcular el índice oscilación del sur. El método usado por la *Australian Bareau of Meteorology* viene dada por la Ecuación 2.1.

$$SOI = 10 \times \frac{P_{diff} - P_{diffav}}{sd(P_{diff})}$$
(2.1)

Donde P_{diff} es (promedio mensual MSLP en Tahiti - promedio de mensual MSLP en Darwin); P_{diffav} es el promedio de la serie de P_{diff} para cada mes en cuestión; y $sd(P_{diff})$ es la desviación estándar de la serie de P_{diff} del mes en cuestión.

Figura 2-7. Representación de los eventos Niña-Niño con el SOI. Las líneas azules y rojas indica el límite ± 8, para los eventos La Niña y El Niño, respectivamente.

2.6.2.2. Índice oceánico El Niño

El índice oceánico El Niño (ONI, por sus siglas en inglés) tiene la misma área de la región Niño3.4. Este indicador es utilizado por la Administración Nacional Oceánica y Atmosférica de Estados Unidos de América (NOAA, por sus siglas en inglés) para el monitoreo de El Niño y La Niña. La NOAA considera que las condiciones de El Niño están presentes cuando el ONI es +0.5 o superior, por lo tanto el Pacífico central es significativamente más cálido de lo normal. Las condiciones de La Niña se producen cuando el ONI es -0.5 o inferior y la región es más fría de lo normal (McGregor and Ebi, 2018).

2.6.2.3. Índice Trans-Niño

El índice Trans-Niño (TNI) se estima con la diferencia de las anomalías estandarizadas de SST entre El Niño1+2 y El Niño4. El TNI captura el gradiente de SST entre el Pacífico central (Niño4) y el este del Pacífico (Niño1+2), útil para identificar el Niño Modoki, caracterizado por las anomalías positivas de SST en el Pacífico central y anomalías negativas en el este (Niño1+2) y oeste (Niño4) del océano. Debido a las diferentes áreas que tienen las regiones Niño1+2 y Niño4 se normaliza antes de estimar la diferencia, $TNI = SST_{1+2N} - SST_{4N}$, donde N es la normalización de las anomalías (McGregor and Ebi, 2018; Trenberth and Stepaniak, 2001).

2.7. Análisis de componentes principales y clúster

El análisis de componentes principales (ACP) es una transformación ortogonal sobre imágenes o datos de n-dimensiones, para generar un nuevo conjunto de componentes que son no correlacionados unos con otros y ordenados con respecto a la variación de los datos originales (Wilks, 1995). El ACP aplica conceptos matemáticos de estadística general y álgebra lineal, como: covarianza, desviación estándar, vectores propios (*eigenvectors*) y valores propios (*eigenvalues*). El análisis clúster o de conglomerados, es una técnica estadística multivariante que agrupa elementos para lograr la máxima homogeneidad en cada grupo y la diferencia entre grupos (Eastman, 2016).

En el ACP, las imágenes de una serie de tiempo están altamente correlacionadas entre sí. El ACP transforma la serie en un conjunto de componentes que son ortogonales (es decir, independientes entre sí) tanto en el tiempo como en el espacio. También se ordenan en términos de la cantidad de varianza que se explican de la serie. En teoría, se pueden producir tantos componentes como imágenes de la serie original. Sin embargo, en la práctica, casi toda la varianza puede explicarse por un número pequeño de componentes, mientras que el resto expresa ruido y variaciones de alta frecuencia (Eastman, 2016).

La manera más fácil de entender el ACP es pensar en las series temporales de valores para un solo píxel a través del tiempo como un vector. Si cada fecha representa una dimensión, entonces la serie puede ser completamente descrita por un solo punto en ese espacio. Por ejemplo, la imagen de tres meses (enero, febrero, marzo) con valores medios de temperatura del aire de 15 °C, 18 °C y 22 °C entonces este punto estaría situado en la posición 15 en el eje de enero, 18 en el eje de febrero y 22 en el eje de marzo. Los vectores se forman al unir cada punto con el origen del espacio. Por supuesto, se necesitan cientos de dimensiones para describir series de la vida real (Eastman, 2016).

Una imagen ráster está formada por muchos píxeles, por lo tanto, se tendrá un espacio ocupado por muchos vectores. La correlación entre cualquier par de vectores es inversamente proporcional al ángulo entre ellos (de hecho, el coseno del ángulo es igual al coeficiente de correlación). El primer componente es el vector medio, es decir, un vector que está lo más cerca posible de toda la colección de vectores. Se conoce como un vector propio o vector característico y su longitud se conoce como el valor propio, explica la cantidad de varianza. El coseno del ángulo entre este vector propio y cada vector de píxel indica su carga en el componente, es decir, la correlación del vector de píxel con el vector propio (Eastman, 2016).

2.8. Modelos estadísticos de regresión

El análisis de regresión es un método estadístico para predecir valores de la variable dependiente (variable de respuesta) con las variables independientes (explicativas o predictores). El análisis de regresión consiste en estimar los coeficientes del modelo a partir de una o más variables explicativas. Los modelos de regresión pueden tener distintas curvas, y pueden ser lineales y no lineales (Spiegel et al., 2010; Vinuesa, 2016).

2.8.1. Regresión lineal simple

Cuando se observa que dos (o más variables) tienen una relación, ésta se expresa de manera matemática con una ecuación. El diagrama de dispersión resulta al combinar las coordenadas de las observaciones de las variables x y y. A partir del diagrama de dispersión, a menudo es posible visualizar una curva que se aproxima a los datos, se conoce como curva de aproximación (Spiegel et al., 2010). Si los datos se aproximan bastante bien por una línea recta, existe una relación lineal simple entre las variables, llamado modelo lineal simple (*lm*, por sus siglas en inglés). Uno de los principales propósitos de la curva de ajuste es estimar la variable de respuesta a partir de una o más variables explicativas. El proceso de estimación se conoce como regresión. Si y va a estimarse a partir de x con ayuda de alguna ecuación, se denomina ecuación de regresión de y en x, y la curva correspondiente, curva de regresión de y en x. La parte no aleatoria de la ecuación describe a y como si estuviera en una línea recta. La pendiente de la línea es el coeficiente β_1 , es decir, el aumento por unidad de cambio en x. La línea que intersecta el eje y es la intersección β_0 . (Dalgaard, 2008; Spiegel et al., 2010). Un modelo lineal simple se representa con la Ecuación 2.2.

$$\widehat{Y} = \beta_0 + \beta_1 x + \epsilon \tag{2.2}$$

Donde \hat{Y} es la variable que se va a predecir, β_0 es el intercepto de la recta de regresión con el eje *y* o eje de las ordenadas, β_1 es la pendiente de la recta, *x* es la variable explicativa y ϵ representa el error asociado a la variable de respuesta. Se asume que los errores son independientes y siguen una distribución Normal, $N(0, \sigma^2)$ (Dalgaard, 2008). Los coeficientes β_0 , β_1 y σ^2 se pueden estimar por el método de mínimos cuadrados (Anexo C1).

2.8.2. Regresión polinomial

La relación de las variables de respuesta y variables explicativas se modela como una función polinomial de orden *n*. El análisis de regresión múltiple puede incluir en el modelo las potencias de segundo orden y superiores de una variable junto con el término lineal original (Dalgaard, 2008). Es decir, se puede tener un modelo como la Ecuación 2.3.

$$\widehat{Y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon \tag{2.3}$$

Aparentemente la ecuación describe una relación no lineal entre y y x, sin embargo, el modelo sigue siendo un modelo lineal. Lo importante es que la relación entre los parámetros y las observaciones esperadas son lineales. Tampoco importa que haya una relación determinista entre las variables de regresión $x, x^2, x^3, ...$, mientras no haya una relación lineal entre ellas. Sin embargo, el ajuste de polinomios de alto grado puede ser difícil porque la casi colinealidad entre los términos hace que el ajuste sea numéricamente inestable (Dalgaard, 2008).

2.8.3. Regresión paso a paso

La regresión paso a paso o *stepwise regression* es un método estadístico basado en regresiones lineales. Este método tiene el propósito de seleccionar las variables con mayor poder predictivo. Utiliza métodos para la selección o exclusión o discriminación para la selección de las variables que más aportan en la predicción (Folland et al., 1991). Existen dos métodos para la selección de las variables: (1) hacia adelante o escalonada (*forward selections*) y (2) hacia atrás (*backward selections*). La selección escalonada empieza sin variables en el modelo, y luego se van adjuntando las variables, dependiendo de los criterios de selección. Por otro lado, la selección hacia atrás empieza con todas las variables predictoras en el modelo y va descartando las menos significativas, considerando los criterios de selección (Folland et al., 1991; Sittichok et al., 2016). Un modelo lineal de regresión paso a paso se expresa como en la Ecuación 2.4.

Marco teórico

$$\hat{Y} = \beta_0 + \beta_1 x_{1(lag_{x1})} + \beta_2 x_{2(lag_{x2})} + \dots + \beta_n x_{n(lag_{xn})} + \epsilon$$
(2.4)

Donde \hat{Y} es la variable que se va a predecir, β_n son los coeficientes de las x variables y ϵ es el error asociado a la variable de respuesta.

2.8.4. Medición de la colinealidad

La colinealidad se produce cuando existe una correlación fuerte entre las variables explicativas del modelo. La correlación sería 1, esto sería que el determinante de la matriz X y su traspuesta sea igual a cero $det(X^TX) = 0$, es decir la matriz X^TX tenga determinante 0 y sea singular, no invertible. Para medir la colinealidad, se puede utilizar el factor de inflación de la varianza (VIF, por sus siglas en inglés) (Kutner et al., 1997).

El VIF cuantifica la intensidad de la colinealidad en un análisis de regresión normal de mínimos cuadrados (Kutner et al., 1997). Dicho de otra forma, el VIF muestra en qué medida se agranda la varianza del estimador como consecuencia de la no ortogonalidad de las variables. Algunos autores consideran que existe un problema grave de colinealidad cuando el VIF es mayor de 10, es decir, cuando el R² > 0.90 (Kutner et al., 1997; Lind et al., 2008).

$$(VIF)_k = \frac{1}{1 - R_k^2}$$
 $k = 1, 2, \dots p - 1$ (2.5)

Donde R_k^2 es el coeficiente de determinación múltiple para las X_k variables predictoras.

2.8.5. Modelos no lineales

Si bien una función es lineal en los parámetros, puede elevar una variable independiente por un exponente para que se ajuste a una curva, por ejemplo: un modelo cuadrático. La línea de ajuste sobre los puntos puede estar expresada por una parábola o una curva cuadrática, el modelo sigue siendo lineal en los parámetros (Frost, 2018; Spiegel et al., 2010). Los modelos no lineales en los parámetros o simplemente no lineales, para alguna función f no dependen únicamente de los valores de la variable independiente x, pero sí dependen estrictamente de los parámetros β . Un modelo no lineal rompe con una limitación del modelo lineal, que es el efecto de un cambio unitario en una variable explicativa x_i sobre la variable dependiente y_i , es constante: $dy_i/dx_i = \beta$ (Novales, 2016; Rivas et al., 1993). El caso típico es que se desea ajustar la relación entre una variable de respuesta y con un predictor unidimensional x, ajustando a un parámetro β (posiblemente multidimensional) (Dalgaard, 2008).

$$\widehat{Y} = f(x,\beta) + \zeta \tag{2.6}$$

Donde \hat{Y} es el valor medido de una o más respuestas (variables dependientes), ϵ es el error experimental asociado con esta medida, y $f(x,\beta)$ es una función que contiene p parámetros $\beta_1, ..., \beta_p$ denotado por β y k variables $x_1, ..., x_k$ (Dalgaard, 2008; Rivas et al., 1993).

2.9. Sensores remotos

Los sensores remotos capturan datos de la zona de estudio que se encuentran físicamente alejados del equipo sensor, por ejemplo: satélites, antenas, globos o aviones (Kapetsky and Aguilar-Manjarrez, 2009). Los sensores remotos, dependiendo de la fuente de energía que utilicen, pueden ser pasivos o activos. Los sensores remotos pasivos tienen el Sol como fuente de energía, esta radiación es reflejada por la superficie terrestre y capturada por el sensor. Los sensores remotos activos, como el radar, emiten la energía y reciben la radiación reflejada por el objeto de estudio (García et al., 2016).

Las variables meteorológicas estimadas por satélite y radar son una alternativa para el déficit de datos observados. Los datos de radar cubren áreas limitadas (Ashouri et al., 2015; Huffman et al., 2007), mientras que las estimaciones de satélite son de cobertura global y resoluciones espacio-temporales relativamente finas, cuando se trata de estudios regionales

(Hong et al., 2007; Sorooshian et al., 2000). Además, los datos de algunos productos de satélite son de acceso libre y disponibles en tiempo casi real.

Los productos estimados por satélite son datos matriciales de cobertura global y tienen distintas escalas espacio-temporales. Los algoritmos de los productos integran principalmente datos de bandas espectrales infrarrojo (IR), microonda (MW) y visible (VIS). Los instrumentos o sensores se encuentran instalados en plataformas satelitales que rodean a la Tierra (Ashouri et al., 2015; Huffman et al., 2007; Joyce et al., 2004).

2.10. Modelos hidrológicos

Un modelo es la representación física o matemática de un sistema real en el cual las respuestas son difícilmente previsibles debido al número grande de factores que entran en juego (Llamas, 1993). El modelado de los recursos hídricos es una herramienta útil para explicar aspectos relacionados con la planeación y gestión del agua. Por otro lado, la modelación hidrológica es importante en el análisis de cantidad y calidad del agua, el pronóstico hidrológico, la evaluación de diversos procesos a varias escalas y la evaluación del cambio de uso del suelo. Además, puede servir para explicar problemas relacionados con el dimensionamiento de obras hidráulicas, la reconstrucción y generación de largas series de datos, entre otros (Bâ et al., 2013; Llanos et al., 1999; Plesca et al., 2012; Refsgaard, 1997; Vázquez, 2010).

Los modelos de simulación lluvia-escurrimiento son globales y distribuidos (Bâ et al., 2001). En los modelos globales las variables fisiográficas y meteorológicas se promedian para la cuenca. En los modelos distribuidos se toma en cuenta la variabilidad espaciotemporal de los datos y los parámetros del modelo. El término distribuido se utiliza para indicar que el balance se hace celda por celda, para tomar en cuenta la variabilidad espacial y temporal del fenómeno. En términos generales si un modelo es distribuido, entonces todos sus parámetros son distribuidos (Bâ et al., 2013a, 2001; Llanos et al., 1999; Llanos and Bâ, 2011; Morin, 2009).

El modelo CEQUEAU (Charbonneau et al., 2009; Morin, 2009) es un modelo hidrológico distribuido, desarrollado por el *Institut National de la Recherche Scientifique-Eau Terre Environnement (INRS-ETE)* de la Universidad de Quebec. El MHD CEQUEAU consta de dos funciones para el modelado de los caudales: (1) producción y (2) transferencia. La primera función (Figura 2-8A) se refiere al modelado del flujo vertical del agua (precipitación, evapotranspiración e infiltración). El agua no abstraída es la lluvia efectiva en cada celda (producción unitaria). La segunda función (Figura 2-8B) modela el flujo lateral del agua, es decir la transferencia de la lluvia efectiva en la red de drenaje. La lluvia producida en cada celda se transfiere, por variación de potencial, desde la parte alta hacia la salida de la cuenca. Además, la función de transferencia toma en cuenta la influencia de lagos, ciénagas e infraestructuras hidráulicas (Morin and Paquet, 2007).

El balance hidrológico en los reservorios suelo, subsuelo y cuerpos de agua, se realiza para cada paso de tiempo y en cada celda según las dimensiones de los coeficientes de drenaje. Posteriormente el modelo calcula el coeficiente de transferencia para cada cuadro parcial considerando el agua en la celda y el área parcial acumulada de la cuenca aguas arriba de dicho cuadro (Morin, 2009). La descripción detallada del modelo CEQUEAU se puede encontrar en Morin (2009) y Morin y Paquet (2007).

Los nombres de los coeficientes (Figura 2-8) que empiezan con la letra "H" corresponden con las profundidades de los reservorios. Los que empiezan con "C" representan a los coeficientes de drenaje (superficial, hipodérmico y subterráneo). El coeficiente HRIMP es la lámina para iniciar el escurrimiento, TRI es la fracción de la superficie impermeable, CIN es el coeficiente de infiltración y EVNAP es la fracción de evapotranspiración en el reservorio subsuelo (Morin, 2009; Morin and Paquet, 2007).

Marco teórico

Figura 2-8. Esquema del modelo CEQUEAU: A) función de producción en la fase líquida y B) función de transferencia.

Capítulo 3: Área de estudio

El Sahel es la región semiárida más grande del mundo, se extiende a lo ancho de África entre el desierto del Sahara y la sabana húmeda (Latitud 12°N a 18°N) (Figura 3-1). En este lugar viven más de 150 millones de personas distribuidas en los países: Benín, Cabo Verde, Cote d'Ivoire, Gambia, Guinea, Guinea-Bisáu, Mali, Mauritania, Niger, Senegal, Chad y Togo (Kühnlein et al., 2014; May et al., 2014). Los principales medios de vida son la ganadería, la pesca y la agricultura de subsistencia. Este último es el sector más importante y el principal medio de sustento de la mayoría de las personas (World Bank, 2013). El Sahel ha sido delimitado por la distribución de la vegetación, la geografía y la distribución de lluvia (Glantz, 1977). Sin embargo, en el presente estudio se considera el Sahel occidental, que comprende la cuenca Bani (alto Niger) y las subcuencas del río Senegal, superficie comprendida entre 8°N a 22°N y 12°W a 4°W (Figura 3-1). La cuenca Senegal se localiza parcialmente en los países de Senegal, Mauritania, Guinea y Mali; y la cuenca del río Bani está principalmente en Mali, Burkina Faso, Côte d'Ivore y una pequeña área en Guinea (Figura 3-1).

Figura 3-1. Localización del área de estudio: cuencas de los ríos Bani en Beneny Kegny (alto Niger) y Senegal en Bakel (incluye las subcuencas Bafing, Bakoye y Faleme) sobre un MNA (~100 m). Ubicación de las estaciones hidrometeorológicas, y ubicación de las boyas del Atlántico, frente a África occidental.

La delimitación de las cuencas se realizó con base en un modelo numérico de altitud (MNA) de 3 arcos de segundo (0.000833°, ~100 m) de resolución espacial, del *Shuttle Radar Topography Mission* (SRTM) (Jarvis et al., 2008). En un estudio realizado por Bâ et al. (2013) en el río Senegal, utilizaron un MNA de ~1 km de resolución, para delimitar la cuenca. En dicho estudio revelaron que las áreas de drenaje hasta las estaciones hidrométricas Bakel y Kayes, son mayores a las reportadas por el mapa oficial de la organización para el desarrollo del río Senegal (OMVS, siglas en francés de *Organisation pour la Mise en Valeur du fleuve Sénégal*). Sin embargo, la parte que no fue considerada por la OMVS se localiza en el norte y es parte del desierto, la cual no contribuye en el escurrimiento.

Las subcuencas de los ríos Bani (alto Niger) y Senegal se eligieron como sitios de estudio, debido a la disponibilidad de los datos históricos y su relativa calidad alta (Bâ et al., 2018a, 2018b, 2018c). Productos de satélite de precipitación y temperatura han sido evaluados en estas cuencas, con resultados satisfactorios (Bâ et al., 2018a). El río Senegal en Bakel está controlado por la represa Manantali (Figura 3-1) desde 1987 (Bâ et al., 2018a). Los ríos seleccionados para la modelación hidrológica no están regulados por infraestructuras importantes que modifiquen el régimen natural del flujo: (1) Bani en Beneny Kegny (alto Niger), y en el río Senegal: (2) Bakoye en Oualia, (3) Faleme en Kidira y (4) Bafing en Bafing Makana.

3.1. Clima de África occidental

La mayor parte de África occidental, desde el sur del Sahara hasta el norte de los países costeros, frente al Golfo de Guinea, solo tienen una estación lluviosa, que dura de uno a seis meses. El área con dos estaciones húmedas, una larga y la otra corta, se localizan más hacia el sur, extendiéndose entre Liberia, Cote d'Ivore, Ghana, Togo, Benin y Nigeria (CILSS, 2016). El mapa de la Figura 3-2 representa la clasificación del clima para África occidental. Este ha sido desarrollado por la Comunidad Económica de Estados de África occidental (ECOWAS, siglas en inglés de *Economic Community of West African States*) a través del ECREEE (ECOWAS *Centre for Renewable Energy & Energy Efficiency*). El mapa está basado en la clasificación de L'Hôte & Mahé (1996), desarrollado con un enfoque especial para África occidental y con aplicación en procesos hidrológicos. Esta clasificación se utiliza ampliamente en estudios regionales (Andersen et al., 2005; Pöyry, 2017).

Los límites de las zonas climáticas (Figura 3-2) se basan en la media anual de precipitación y temperatura (L'Hote et al., 1996; L'Hôte and Mahé, 1996; Pöyry, 2017). De sur a norte, desde la costa húmeda hasta la parte árida del Sahara, África occidental puede ser dividido en 5 regiones caracterizadas por el clima y la vegetación Tabla 3-1. El clima de la cuenca Bani se describe, en el sur, como un régimen sudano y en el norte como saheliano, caracterizado por pastos y tierras comunales de pastoreo (Traore et al., 2014). La cuenca del río Senegal se extiende más hacia el norte, en el desierto del Sahara en Mauritania. El clima se describe como sudano-saheliano en el sur y sahariano en el norte.

Figura 3-2. Distribución geográfica de las zonas climáticas para África occidental (L'Hote et al., 1996).

Área de estudio

Precipitación anual (mm) (CILSS, 2016)	Número de meses secos (CILSS, 2016)	Clasificación del clima para África occidental	Clasificación climática (L'Hôte & Mahé, 1996)	Zona bioclimática (CILSS, 2016)
2200-5000	0	Sudanese II y III	Ecuatorial, dos estaciones húmedas	Guineo-Congolian
1200-2200	5-7	Sudanese II y III	Tropical transicional, una estación húmeda	Guinea, Sudan
600-1200	7-8	Sudanese I	Tropical	Sudan, Sahel
150-600	8-9	Semiárido sur	Tropical semiárido	Sahel
150-600	8-9	Semiárido norte	Desierto semiárido	Sahel, Sahara
< 150	>10	Sahariano	Desierto (árido)	Sahara

Tabla 3-1. Clasificación del clima de África occidental.

En el Sahel occidental, la precipitación tiene una alta variabilidad con respecto a la latitud, de sur a norte, varía aproximadamente entre 2000 y 80 mm año⁻¹ medida con los datos del producto PERSIANN-CDR (Bâ et al., 2018a). Las lluvias de África occidental se debe a la presencia del monzón. El WAM aporta el 80% de las precipitaciones anuales en África occidental. Las lluvias se presentan entre mayo y octubre (Folland et al., 1991) y las lluvias más fuertes ocurren entre junio y septiembre (Bâ et al., 2018a; Gado Djibo et al., 2015b). La precipitación estacional del Sahel es regulada por tres principales procesos: (1) los flujos de humedad desde el sur asociados con el WAM, (2) el movimiento estacional de la ZCIT y (3) la advección del aire seco desde el Sahara o viento Harmattan (Andersen et al., 2005; Buontempo, 2010).

En el Sahel occidental, la lluvia interanual ha experimentado cambios importantes en las últimas cuatro décadas. En los años setenta y ochenta se observaron severas sequías (Fensholt et al., 2013; Nicholson, 2013), mientras que en años recientes Samimi et al. (2012) registraron precipitaciones intensas equivalentes con las de periodos de retorno de 50 hasta 1200 años durante la temporada de lluvias del 2007 en la cuenca alta del río Volta. En la Tabla 3-2 se presenta la precipitación de las subcuencas de los ríos Bani y Senegal, obtenidas con el producto PERSIANN-CDR. En la Figura 3-3 se observa que la lluvia del

producto PERSIANN-CDR reproduce muy bien la lluvia espacial. En el sur se presentan las lluvias más altas y disminuye hacia el norte, en el desierto del Sahara. Las isoyetas obtenidas con la lluvia PERSIANN-CDR corresponden con la precipitación observada en los pluviómetros (Figura 3-3).

Tabla 3-2. Precipitación media interanual de las subcuencas de los ríos Bani (alto Niger) y Senegal conPERSIANN-CDR, en el periodo 1983-2020.

Cuenca	Precipitación media (mm)	Precipitación máxima (mm)	Precipitación mínima (mm)	Área (km²)
Bani en Beneny Kegny	1070	1455	715	112000
Bakoye en Oualia	765	1260	415	102000
Bafing en Bafing Makana	1490	1795	1230	21000
Faleme en Kidira	1070	1495	665	29000

Figura 3-3. Distribución de la precipitación media con el producto PERSIANN-CDR en los años 1983-2020; y la lluvia observada en los pluviómetros entre 1983-2015.

La cuenca del río Bani en Beneny Kegny tiene una área de 112000 km² y una precipitación promedio de 1070 mm año⁻¹. En el río Senegal, la cuenca Bakoye en Oualia tiene una área

de 102000 km², una parte del área corresponde con el desierto del Sahara, la lluvia media es de 760 mm año⁻¹. La cuenca Bafing en Bafing Makana tiene la quinta parte del área de Oualia y recibe el doble de precipitación (1500 mm año⁻¹). La cuenca Faleme con una área de 29000 km² es un cuarto del área de Bani y recibe la misma cantidad de lluvia (1070 mm año⁻¹). Las precipitaciones máximas de las cuencas superan los 1200 mm año⁻¹ hasta 1490 mm año⁻¹. Las precipitaciones mínimas son entre 400 y 1200 mm año⁻¹. La precipitación de África occidental tiene alta variabilidad espacial-temporal, el suroeste recibe más lluvia que el noreste y los meses más húmedos son entre julio y septiembre.

En el Sahel, el clima cálido y árido predomina la mayor parte del año. La estación seca o invierno boreal está bajo la influencia de una zona de alta presión sahariana (Figura 3-4a), el viento Harmattan del noreste arrastra aire seco y caliente hacia el norte de África (Andersen et al., 2005). Por el contrario, la temporada húmeda se debe a la baja presión en el norte en los meses julio-septiembre (Figura 3-4b), incluido el movimiento hacia el sur de los vientos del Harmattan, es un fuerte estímulo para la humedad (Nicholson, 2012). En la Figura 3-4 se muestran los vectores del viento y la presión en África occidental, en la estación seca (enero) y la estación húmeda (julio-agosto) (Nicholson, 2012).

Figura 3-4. Circulación del aire de la región: (izq.) en el mes de enero, (der) en los meses julio-agosto (Nicholson, 2012).

La temperatura máxima y el rango de temperatura de África occidental tiene un gradiente positivo con la latitud. En la parte húmeda del sur, la temperatura varía poco, mientras que en la parte árida del norte varía entre 0 °C a más de 45 °C (CILSS, 2016). Similar a la

distribución de la lluvia, la temperatura también varía a lo largo del año, los meses más cálidos son junio-julio-agosto y los menos cálidos entre diciembre y enero.

3.2. Cobertura y uso del suelo

La base de datos del *Global Land Cover Characterization* (GLCC), contiene una serie de datos de clasificación de cobertura del suelo. Los datos GLCC son desarrollados por el servicio geológico de los Estados Unidos (USGS, por sus siglas en inglés). Los datos primarios se basan en la clasificación no supervisada por el sensor AVHRR (*Advanced Very High Resolution Radiometer*) y el índice de vegetación de diferencia normalizada (NDVI, por sus siglas en inglés). Los datos AVHRR son de abril de 1992 a marzo de 1993. Los datos del GLCC están disponibles en tipo ráster (a ~1 km de resolución) en los servidores del centro para la observación y ciencia de los recursos terrestres (EROS, siglas en inglés de *Earth Resources Observation and Science*) del servicio USGS (Brown et al., 1999).

El mapa de clasificación de la cobertura del suelo divide el continente en 17 categorías. En África occidental se encuentran 3 tipos de bosque, 2 tipos de sabana, cultivos, matorrales, entre otros (Figura 3-5). El mapa de cobertura y uso del suelo es un requisito para correr el modelo hidrológico CEQUEAU. El modelo CEQUEAU requiere que el mapa tenga 4 tipos cobertura: (1) cuerpos de agua, (2) bosques, (3) ciénegas y (4) otros. Los bosques, matorrales y cultivos se agregan en la categoría "bosques"; las tierras húmedas se clasifican como "ciénegas"; las áreas sin cobertura vegetal, los poblados o infraestructura se clasifican con la categoría "otros" (Morin, 2002; Morin and Paquet, 2007).

Figura 3-5. Cobertura del suelo de África occidental. Fuente: base de datos de Global Land Cover Characterization.

En la cuenca del río Bani, el 97% de la cobertura corresponde con Sabana, el resto comprende áreas de cultivos, vegetación dispersa y pastos (Tabla 3-3). Esta cuenca tiene remanentes de bosque en la parte media y alta de la cuenca, sin embargo, no se refleja en el mapa debido a la resolución del ráster (~1 km). Un mosaico de cultivos-vegetación natural cubren el 2.5% del área, seguido por cultivos y vegetación dispersa que representan el 0.1% del área de la cuenca.

Cobertura	Área (km²)	(% área)
Sabana leñosa	60586	54.13
Sabana	48554	43.38
Mosaico, cultivo-natural	2758	2.46
Cuerpos de agua	392	0.35
Cultivos	116	0.1
Vegetación dispersa	115	0.1
Pastos	30	0.03

Tabla 3-3. Superficie de la cobertura del suelo en la cuenca del río Bani.

En la cuenca del río Senegal en Bakel, el tipo Sabana cubre alrededor del 50% de la superficie. La vegetación dispersa es alrededor del 30%, se encuentra principalmente en el norte de la cuenca. Los pastos y matorrales cubren el 25% de la superficie, en el sur de la cuenca se encuentran bosques siempre verdes, pero tienen una pequeña proporción respecto a otras coberturas (Tabla 3-4).

Cobertura	Área (km2)	(% área)
Sabana leñosa	136698	35.78
Vegetación dispersa	111015	29.06
Pastos	70157	18.36
Sabana	62002	16.23
Matorral	25221	6.6
Mosaico, cultivo-natural	14482	3.79
Cuerpos de agua	1590	0.42
Cultivos	536	0.14
Bosque siempre-verde	69	0.02

Tabla 3-4. Superficie de la cobertura del suelo en la cuenca del río Senegal en Bakel.

3.3. Caudales

A partir de la sequía de los años setenta, el Sahel se convirtió en uno de los lugares más estudiados con respecto a la hidrología, el clima, aspectos sociales y económicos (Folland et al., 1991; Nicholson, 2012; Rodríguez-Fonseca et al., 2015). Los caudales de esta región han sido observados desde inicios del siglo pasado y los datos están disponibles hasta el 2015 (Bâ et al., 2018a). La gestión de estos ríos es desarrollada por los servicios hidrometeorológicos de los países del Sahel y la OMVS en la cuenca del río Senegal (Bâ et al., 2018a, 2018c).

El río Bani en la estación Beneny Kegny es el principal tributario no controlado del río Niger. El caudal promedio en Beneny Kegny es de 370 m³s⁻¹ (1995-2015) y los picos del periodo húmedo superan los 2000 m³s⁻¹ (Bâ et al., 2018a, 2018c). Los principales tributarios del río Senegal son Bafing, Faleme y Bakoye. El caudal promedio anual en el río Bafing en la estación Bafing Makana es de 250 m³s⁻¹ (1995–2015), mientras que en Faleme en Kidira es de 124 m³s⁻¹ y 81 m³s⁻¹ en Bakoye hasta la estación Oualia. En el río Faleme, aguas abajo de la estación Bafing Makana (ver Figura 3-1), se localiza la represa Manantali, reservorio que controla el caudal del río Senegal desde 1987 (Bâ et al., 2018a, 2018b). Cabe señalar que en la actualidad se están construyendo o planeando otras represas en cada uno de estos ríos (Bâ et al., 2018a).

En la Figura 3-6 se muestra el hidrograma del río Senegal en la estación Bakel. Se observa que a partir de la década de 1970 el caudal disminuye drásticamente hasta finales de 1980, y aumenta un poco en los años recientes, sin embargo, los caudales siguen siendo reducidos con relación al siglo pasado, los picos durante los últimos 50 años no alcanzan el caudal medio histórico de 895 m³s⁻¹.

Figura 3-6. Caudales medios anuales del río Senegal en la estación Bakel (1904-2014). La línea azul es el caudal antes de la puesta en marcha de la represa Manantali y la línea azul claro es el caudal controlado por la represa. La línea roja punteada representa el caudal medio histórico de la serie de datos.

Capítulo 4: Método de investigación

En este capítulo se presentan los procedimientos de la metodología de investigación. En la Figura 4-1 se muestra el diagrama de flujo para desarrollar los objetivos planteados. El diagrama está compuesto por entrada de datos, procesos, subprocesos y resultados. Los procesos macro son: análisis y validación de productos de satélite; clasificación de la SST, RHUM y MSLP del Atlántico; implementación de modelos estadísticos de pronóstico de precipitación y temperatura; desagregación de datos mensuales en diarios y el modelado de escurrimientos. Los procedimientos de la metodología están automatizados en funciones y códigos de línea en lenguaje R (ver Anexos).

Figura 4-1. Diagrama de flujo general del método de investigación.

Figura 4-1. Diagrama de flujo general del método de investigación. (Continuación).
4.1. Entrada y análisis de datos

Se conoce ampliamente que las anomalías de los índices El Niño y las fluctuaciones de la SST y los cambios de presión SLP en el Pacífico repercuten en las lluvias de las regiones tropicales (Gado Djibo et al., 2015b; Janicot et al., 2011; Nicholson and Kim, 1997). En este estudio se utilizaron los predictores SST, SLP y RHUM del Atlántico tropical y los índices Niño1+2, Niño3.4, Niño4, ONI y TNI para explicar las lluvias y temperaturas del Sahel occidental (Figura 4-2). Además, se utilizaron como variables de respuesta los productos de satélite PERSIANN-CDR y reanálisis de temperatura del aire ERA5 (Ta2m-ERA5) a 2 metros.

Figura 4-2. Procedimiento para el análisis y validación de los productos de satélite y de los índices climáticos.

Los datos utilizados en este estudio se obtuvieron de los repositorios de la Administración Nacional Aeronáutica y el Espacio y la NOAA. Otros datos se descargaron del Centro Hidrometeorológico y Sensores Remotos (CHRS, por sus siglas en inglés) de la Universidad de California Irvine. Además, los datos ERA5 del *European Centre for Medium-Range Weather Forecasts* (ECMWF) y el programa *Copernicus*. Los datos son de tipo ráster, vector, y vienen en diferentes formatos y resoluciones espacio-temporales (Tabla 4-1 y Anexo A1).

Datos	RslEsp	RslTmp	Prd	Dsf	Cbr	Producto	Tipo	Unidad	Formato	Extensión
SST	0.25°	d	1979- presente	24h	Global	SST ERA5	Temperatura	°K	ráster	*.nc
SST boyas	Puntual	m	1997- 2019	1m	Global	Prediction and Research Moored Array in the Tropical Atlantic	Temperatura	°C	tabular	*.gz
MSLP	0.25°	m	1979- presente	1m	Global	Mean Sea Level Pressure	Presión	Pascales	raster	*.nc
RHUM	0.25°	d	1979- 2017	1m	Lat: 0° a 90°, Lon: -90° a 90°	Humedad relativa a 1000 hPa	Humedad	%	ráster	*.nc
Niño1+2	Regional	m	1948- presente	1m	Regional	Índice Niño1+2	Temperatura/ SST	°C	tabular	*.CSV
Índices3.4	Regional	m	1948- presente	1m	Regional	Índice Nino3.4	Temperatura/ SST	°C	tabular	*.CSV
Niño4	Regional	m	1948- presente	1m	Regional	Índice Niño4	Temperatura/ SST	°C	tabular	*.CSV
ONI	Regional	m	1950- presente	1m	Regional	Índice ONI	Índice	§	tabular	*.CSV
TNI	Regional	m	1948- presente	1m	Regional	Índice TNI	Índice	§	tabular	*.CSV
Ta_2m	0.25°	h, d, m	1948- 2017	§	Global	Temperatura diaria del aire a 2m (Ta2m-ERA5)	Temperatura	°K	ráster	*.nc
Prc	0.25°	d, m	1983- 2018	72h	Lat: -60° a 60°	PERSIANN-CDR	Precipitación	mm	ráster	*.Tif
Obs.: Ta, Prc	puntual	d, m	1960 -	§	Lat: 9° a 18°	Servicios meteorológicos de	Temperatura,	°C, mm	tabular	*.xls

Tabla 4-1. Información resumida de los datos de entrada (ver complemento de la información en el Anexo B1).

Datos	RslEsp	RslTmp	Prd	Dsf	Cbr	Producto	Tipo	Unidad	Formato	Extensión
			2015		Lon: -13 a -4	los países del Sahel	Precipitación			
MNA	0.0008333° y 0.008333°	§	§	§	Lat: -60° a 60°	SRTM	Altitud	msnm	ráster	*.GeoTif
Cobertura del suelo	1000 m, prj Goode	§	1993	§	Global	GLCC	Cobertura	§	ráster	*.Tiff
Clima	1000 m	§	1996	§	Regional	Clima de África occidental, método L'Hôte et al. 1996	Clima	§	vector	*.shp

 $RslEsp = resolución espacial, RslTmp = resolución temporal, Prd = periodo, Dsf = desfase, Cbr = cobertura, h = hora, d = día, m = mes, Ta = temperatura del aire, Ta_2m = temperatura del aire a 2 m de la superficie, Prc = Precipitación, Obs = datos observados, Lat = latitud, Lon = longitud, *. = extensión, § = dato ausente o no aplica.$

4.1.1. Datos observados

Los datos observados son aquellos que se miden en el campo, también llamados datos *in situ*. La frecuencia de los datos observados está determinada por los servicios meteorológicos y la Organización Meteorológica Mundial (OMM), y pueden ser subdiarios, diarios, semanales, mensuales, etc. Los registros subdiarios se realizan manualmente a una hora fija por la mañana, al medio día y en la tarde, o con equipos digitales calibrados que puede ser en fracción de minutos (OMM-N°168, 1994; OMM N°8, 2010).

4.1.1.1. Datos meteorológicos e hidrométricos

En el área de estudio existen observaciones meteorológicas desde inicios del siglo pasado. Sin embargo, los datos de años recientes no son asequibles debido a que los Servicios Meteorológicos los venden. Los registros disponibles, dependiendo del país, son observaciones de precipitación y temperatura desde 1950 hasta el 2002, 2006, 2014 y 2015. Se utilizaron los registros de lluvia de 20 estaciones meteorológicas, de las cuales 7 tienen datos de temperatura (Tabla 4-2). Los datos observados se utilizaron para validar los datos de los productos de satélite PERSIANN-CDR y ERA5. Los datos que proveen los Servicios Meteorológicos de los países del Sahel, en algunos casos son a escala mensual, por ejemplo la precipitación de Korhogo y Odienne.

En este estudio se utilizaron los caudales de 4 estaciones hidrométricas para modelar los escurrimientos: estación Beneny Kegny en el río Bani (alto Niger), Oualia en el río Bakoye, Bafing Makana en el río Bafing y la estación Kidira en el río Faleme, estos tres últimos se localizan en la cuenca del río Senegal. Los datos asequibles datan desde 1900 hasta 2015. En este estudio, se eligieron cuencas de ríos no controlados por grandes represas que regulan el curso normal del agua (Bâ et al., 2018a).

#	Nombre de la estación	Longitud (°)	Latitud (°)	Altitud (msnm)	Datos de Temperatura (N- meses) periodo	Datos de Precipitación (N- meses) periodo
1	Tidjikja	-11.4283	18.5570	398	275 1983-2006	295 1983-2007
2	Nema	-7.2700	16.6200	250	§	288 1983-2006
3	Kiffa	-11.4100	16.6100	120	§	288 1983-2006
4	Matam	-13.2538	15.6569	16	§	300 1983-2007
5	Nioro Du Sahel	-9.5816	15.2309	240	§	227 1983-2001
6	Bakel	-12.5557	14.9981	30	81 1983-1989	295 1983-2013
7	Kayes	-11.4444	14.4484	280	§	217 1983-2001
8	Goudiry	-12.7087	14.1844	128	§	300 1983-2007
9	Segou	-6.2758	13.4351	287	§	336 1983-2015
10	San	-4.8924	13.2780	290	§	264 1983-2006
11	Kita	-9.4820	13.0356	327	§	226 1983-2001
12	Bamako-Ville	-8.0130	12.6330	325	223 1983-2001	210 1983-2002
13	Kedougou	-12.2090	12.5709	160	§	300 1983-2007
14	Bamako-Senou	-7.9455	12.5493	390	189 1983-1998	287 1983-2006
15	Siguiri	-9.1857	11.4017	388	24 1983-1984	293 1983-2007
16	Sikasso	-5.6833	11.3500	382	§	337 1983-2015
17	Labe	-12.2900	11.3360	1030	23 1983-1984	273 1983-2007
18	Mamou	-12.0850	10.3750	740	250 1983-2003	299 1983-2008
19	Odienne	-7.5648	9.5338	400	§	142 1983-2014
20	Korhogo	-5.6162	9.4500	380	§	113 1983-2014

Tabla 4-2. Disponibilidad de datos observados de precipitación y temperatura desde 1983 a 2015.

§ = dato faltante, N-meses = meses concomitantes.

4.1.1.2. Temperatura del mar observada (boyas)

El programa PIRATA (*Prediction and Research Moored Array in the Tropical Atlantic*) consiste en una red de boyas que transmiten los datos meteorológicos y oceanográficos del Atlántico tropical en tiempo real desde 1997 a la presente fecha. PIRATA estudia las interacciones océano-atmosféricas que afectan el clima regional y la variabilidad del clima estacional, interanual y a largo plazo. La variabilidad del Atlántico está fuertemente influenciado por las condiciones hidroclimáticas y consecuentemente en la economía de las regiones que bordean el Atlántico, como África occidental, norte de Brasil, el Caribe y Estados Unidos. El programa cuenta con el apoyo de Francia (IRD, *Meteo-France*, CNRS e IFREMER), Brasil (INPE y DHN) y Estados Unidos (NOAA) (Bourlès et al., 2019).

Los datos de temperatura del agua de las boyas se utilizaron para validar el producto SST del producto de satélite SST ERA5. Los datos de las boyas están disponibles a pasos de tiempo mensual desde 1998 y 2007 hasta el 2019. Se utilizaron los criterios R² y PBIAS para medir la bondad de ajuste y el sesgo entre los datos SST observados (punto) y SST estimados (píxel 0.25° x 0.25°). Se eligieron 5 boyas, localizadas frente a la costa de Mauritania, Senegal y en el Golfo de Guinea (Figura 2-4).

4.1.2. Datos océano-atmosféricos

En este estudio se utilizan predictores del Atlántico (SST, MSLP, RHUM) y los índices del Pacífico (Niño1+2, Niño3.4, Niño4, ONI y TNI). Además, las variables dependientes precipitación (PERSIANN-CDR) y temperatura (Ta2m-ERA5). Por un lado, los datos de los productos PERSIANN-CDR y Ta2m-ERA5 se validaron con los datos observados en las estaciones meteorológicas, y por otro lado, la SST se validó con la temperatura del mar observada en las boyas del Atlántico.

El procedimiento para leer y procesar los datos SST, MSLP, RHUM, PERSIANN-CDR y Ta2m-ERA5 tiene la misma lógica, con pequeñas diferencias en los *scripts*, debido al tipo de datos [*.Tif, texto (*.txt, *.csv), NetCDF (*.nc)]. La ventaja de trabajar en el lenguaje R, es la versatilidad a la hora de trabajar con cualquier tipo de dato.

Los datos se descargaron de los repositorios oficiales de las organizaciones Gubernamentales dueños de los datos. En un *script* de R se leen los datos, se agrupan y se almacenan en memoria. A continuación se crea una máscara para extraer los datos de las áreas de interés. Debido a que algunas estaciones se encuentran fuera de las cuencas, se unen en un solo archivo los polígonos de los píxeles de las estaciones con los píxeles de las cuencas. La máscara contiene 750 píxeles de 0.25° x 0.25°. Luego, se extraen los datos ráster de precipitación y temperatura en la ubicación *xy* de la máscara.

A continuación se hace un arreglo de los datos (*tidy data*) y se construye una tabla (en R se llama *tibble (tidyverse)* o *data frame (R base)*). Las columnas de un *tibble*, llamadas

variables, corresponden con la ubicación geográfica *XY*, la fecha de la capa ráster y el nombre de la variable climática. Las filas del *tibble* son los registros o valores de la variable en la serie temporal. En este punto es importante crear un vector de fecha de la serie temporal con el mismo paso de tiempo para rellenar con NA en el caso de existir datos faltantes. De esta manera se tiene mayor control de los datos. A continuación se validan los datos de satélite con los datos observados de las estaciones meteorológicas en el punto píxel. Para validar se utilizan criterios gráficos (*scatter plots*) y criterios matemáticos (R² y PBIAS) para medir la bondad de ajuste entre los datos de satélite y los datos observados.

4.1.2.1. Precipitación PERSIANN-CDR

El producto *Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks - Climate Data Record* (PERSIANN-CDR) es un algoritmo de lluvia desarrollado por CHRS de la Universidad de California en Irvine (Ashouri et al., 2015; Nguyen et al., 2018). PERSIANN-CDR tiene un registro histórico de precipitación desde el año 1983 hasta el presente, con retardo de seis meses. Los datos del producto PERSIANN-CDR son de cobertura casi global (60°S a 60°N), resolución espacial de 0.25° x 0.25°, escala temporal diaria, mensual y anual. El producto PERSIANN-CDR se genera a partir del algoritmo PERSIANN, utiliza los datos IR GridSat-B1 y es ajustado con el producto mensual del *Global Precipitation Climatology Project* (GPCP); datos están disponibles en http://chrsdata.eng.uci.edu/.

El producto PERSIANN-CDR se utiliza como variable dependiente en los modelos que predicen la lluvia en África occidental. Se eligió esta base de datos debido a que tiene un registro de datos continuos mayor a 30 años. En las cuencas Bani y Senegal, Bâ et al. (2018a) y Bâ et al. (2018b), evaluaron las lluvias del producto PERSIANN-CDR con las lluvias de los pluviómetros de estaciones meteorológicas en el punto-píxel. Los resultados de las evaluaciones son satisfactorias, el R² es mayor 0.80 en la mayoría de las estaciones meteorológicas. El rendimiento de los modelos hidrológicos utilizando este producto también fueron muy buenos.

4.1.2.2. Temperatura del aire (Ta2m-ERA5)

El producto de temperatura ERA 5 (Hersbach et al., 2020), es la quinta generación de los datos de reanálisis de *European Centre for Medium-Range Weather Forecasts* (ECMWF) *Copernicus*, del programa europeo de observación de la Tierra. El parámetro Ta2m-ERA5 mide la temperatura del aire a 2 metros sobre la superficie en unidades Kelvin. Para transformar a Celsius se utilizó la ecuación $^{\circ}C = ^{\circ}K - 273.15$. Los datos Ta2m-ERA5 tienen resolución espacial de 0.25° x 0.25°, a distintas escalas de tiempo, se utilizó la temperatura media mensual. Estos datos están disponibles desde 1979 al presente, y se pueden descargar desde <u>https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview</u>.

4.1.2.3. Temperatura de la superficie del mar

La temperatura de la superficie del mar (SST) es una variable importante para comprender las interacciones entre el océano y la atmósfera, el monitoreo del clima y la predicción del tiempo. Además, la SST se utiliza para el monitoreo y seguimiento de los fenómenos atmosféricos. A menudo el propósito previsto para el análisis influye fuertemente en la resolución y la precisión del análisis (Reynolds et al., 2007).

Los datos de reanálisis global ERA versión 5 (ERA5) tienen un conjunto de datos, que incluye la SST a 0.25° x 0.25° de resolución espacial y frecuencia diaria (Hersbach et al., 2020). La SST ERA5 viene dada por dos proveedores externos. Antes de septiembre de 2007, se utilizaba la SST del conjunto de datos Centre Sea Ice and Sea Surface Temperature data set (HadISST2) y, a partir de septiembre de 2007, se utiliza el conjunto de datos OSTIA (*Operational Sea Surface Temperature and Sea Ice Analysis*), disponibles en https://podaac.jpl.nasa.gov/dataset/AVHRR OI-NCEI-L4-GLOB-v2.0. La SST ERA5 tiene unidades de Kelvin (°K). El *Group for High Resolution Sea Surface Temperature* (GHRSST) de la NOAA genera la SST a partir de datos IR y MW (National Centers for Environmental Information, 2016; Reynolds et al., 2007). El producto GHRSST utiliza la

interpolación óptima (IO) y extrapolaciones desde observaciones desde distintas fuentes de datos. Los datos IR provienen de datos de satélites AVHRR (*Advanced Very High Resolution Radiometer*), AMSR (*Advanced Microwave Scanning Radiometer*) y plataformas *in situ* (por ejemplo: barcos y boyas). Los datos satelitales incluyen satélites geoestacionarios y de órbita polar (Reynolds et al., 2007). La IO tiene como objetivo extraer estadísticamente la máxima información de las fuentes de datos, incluyendo observaciones, registros climatológicos y correlaciones espaciales entre variables (WMO Nro. 182, 1992).

Los datos diarios SST ERA5, 0.25° x 0.25° del ECMWF se descargaron del sitio web <u>https://cds.climate.copernicus.eu/cdsapp#!/yourrequests?tab=form</u> (Tabla 4-1). Las imágenes ráster se compilaron en una serie de datos desde 1983 a 2020 y se acumularon a nivel mensual (promedio de SST por píxel). Los datos originales tienen la unidad en grados Kelvin, se transforman a grados Celsius con la relación $^{\circ}C = ^{\circ}K - 273.15$. Los datos se extraen de la misma manera que la precipitación y se hace un arreglo de los datos y se guardan en un *data-frame* o *tibble* de R.

4.1.2.4. Presión del nivel medio del mar

La presión media del nivel del mar (MSLP, por sus siglas en inglés) se utiliza para identificar los sistemas de alta y baja presión, llamados también como ciclones y anticiclones. Se utilizaron los datos MSLP del producto ERA5, a 0.25° x 0.25° y paso de tiempo mensual y cobertura global. Estos datos están disponibles desde 1979 al presente en el repositorio <u>https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview</u> (Hersbach et al., 2020).

4.1.2.5. Humedad relativa

La humedad relativa (RHUM, siglas en inglés de R*elative Humidity*) es la presión de vapor de agua en la que el aire se satura (el vapor de agua empieza a condesarse en agua o a

depositarse en hielo). Se utilizaron los datos RHUM del producto ERA5, a 0.25° x 0.25° y a paso de tiempo mensual y cobertura global. Estos datos están disponibles desde 1979 al presente en el repositorio <u>https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means?tab=overview</u> (Hersbach et al., 2020).

4.1.2.6. Índices El Niño

Se utilizaron los datos de los índices El Niño del *Climate data Guide* del *National Center for Atmospheric Research* (NCAR). Estos datos son del tipo tabla, los meses en columnas y los años en filas. Los datos se convierten en tablas largas con dos columnas (fecha y observación). Estos datos están disponibles desde 1948 al presente y se pueden obtener desde <u>https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni</u>.

4.1.3. Herramientas para el análisis de datos

El procesamiento de los datos, en la mayoría de los casos, se realiza con gestores de bases de datos y herramientas SIG. En este estudio, se utilizó el lenguaje de programación R (R Core Team, 2021) en el análisis de datos y Qgis (QGIS.org, 2021) en la creación de mapas temáticos. En el entorno de R se pueden utilizar librerías de Python, GRASS, SAGA y con sus propias librerías SIG como {*sf*}, {*sp*}, {*raster*}, {*tmap*}, {*stars*} y otras. Los paquetes más utilizados en el análisis de datos son {*tidyr*}, {*dplyr*}, {*tidyverse*}, {*lubridate*}, {*rgdal*}, {*rsaga*}, {*raster*}, {*ggplot2*}, y el paquete {*base*} del lenguaje R (Hadley and Francois, 2016; Ihaka and Gentleman, 1996; R Core Team, 2021; Wickham, 2021, 2014). El lenguaje R es orientado a objetos y la escritura y ejecución de código se puede realizar directamente desde el programa R sin necesidad de un compilador. Además, existen algunos editores o entorno de desarrollo integrado (IDE) para la escritura de código y visualización de resultados. RStudio (RStudio Team, 2021) es un IDE que ofrece mayor versatilidad a la hora de programar en R, en el sitio <u>https://rstudio.com/</u> se puede descargar el programa y encontrar información adicional. El programa del lenguaje R y los paquetes

se descargan desde los repositorios CRAN (*The Comprehensive R Archive Network*) desde <u>https://cran.r-project.org/</u> y otros se descargan desde Git (github o gitlab) utilizando la librería {*devtools*}, por ejemplo, devtools::install_git('nombre_del_paquete'). Los programas de R, Rstudio y QGIS tienen licencia libre y son multiplataforma, disponibles en los sistemas operativos Linux, Mac y Windows.

4.2. Clasificación del Atlántico

El Atlántico se dividió en áreas homogéneas con el objetivo de identificar los lugares con mayor poder predictivo de precipitación y temperatura del Sahel. Primero se leen por separado los datos ráster de una de las tres variables. Si los datos son diarios se agrupan en la escala mensual, utilizando una función de agrupación y se obtiene el promedio de las variables (SST, MSLP, RHUM) en cada píxel. Después se utiliza el análisis de componentes principales para explicar la mayor variabilidad y reducir el número de componentes. A continuación se hace un análisis de conglomerados o clúster con los componentes principales. Se utiliza el método de silueta para obtener el número de conglomerados y el método *K-medias* para crear los grupos (Figura 4-3). El método de silueta se indica en el Anexo C3.

Sittichok et al. (2014) utilizaron la SST (2° x 2°) como predictor de lluvia y una región grande del Atlántico (longitud 59°W–15°E, latitud 19°S–29°N), Pacífico e Índico tropical. Agruparon la SST en una regresión gradual mediante análisis de componentes principales y análisis de correlación canónica. Folland et al. (1991) agregaron las anomalías de SST de 2.5° x 2.5° de resolución en áreas de 10° x 10° para estimar la precipitación del Sahel. En la literatura no existe un tamaño óptimo para discretizar las áreas de SST que represente por teleconexión la lluvia de un determinado lugar.

Figura 4-3. Regionalización del Atlántico y extracción de datos, código en Anexo A2 y Anexo A3.

En este estudio, el procedimiento de clasificación del Atlántico consiste en agrupar los píxeles de SST MSLP y RHUM para formar regiones homogéneas utilizando ACP y análisis clúster (Figura 4-3). Las regiones del Atlántico se comparan con los píxeles de lluvia (750 píxeles de 0.25° x 0.25°). En este punto es importante reducir las dimensiones, es decir, elegir la región con el mejor ajuste, considerando el coeficiente de determinación ajustado (R²ajs) mayor a 0.5, el criterio de información Akaike (AIC) menor y el desfase sea igual o mayor a seis meses (Gado Djibo et al., 2015b).

4.3. Teleconexiones océano-clima

Se utilizaron los predictores SST, MSLP, RHUM, Niño1+2, Niño4, Niño3.4, ONI y TNI para encontrar la posible relación con la precipitación y la temperatura del Sahel. Los datos

de los predictores se obtuvieron de los repositorios de las agencias gubernamentales que proveen los datos. Las teleconexiones más conocidas son la SST y los índices Niño con la lluvia de cualquier región tropical del mundo (Gado Djibo et al., 2015b; Janicot et al., 2001). En otros estudios se utilizan índices del Atlántico y las variables SLP, RHUM, viento zonal, Ta, entre otros (Gado Djibo et al., 2015a). La teleconexión entre dos variables implica que tiene un desfase temporal, donde las series de tiempo tienen el mejor ajuste. La correlación cruzada (CC) nos indica el desfase óptimo de las series. Para medir la teleconexión se utilizan criterios gráficos y matemáticos, en este estudio se utilizaron gráficos de dispersión (*scatterplots*), gráficos de líneas de las series temporales, así como el coeficiente de correlación de Pearson (r) y coeficiente de determinación (R²).

El resultado de la CC es un correlograma, el cual indica los valores picos de la correlación. La Ecuación 4.1 representa matemáticamente la correlación cruzada

$$R(\tau) = \int_{-\infty}^{\infty} x(t) \ y(t+\tau)dt$$
(4.1)

Donde x(t) y y(t) están en función del tiempo, τ es el tiempo de desfase (lag) que puede ser negativo, cero o positivo. R es la correlación cruzada, la cual está en función del tiempo de desfase. Cuando x(t) = y(t) la correlación cruzada se convierte en la autocorrelación. Cuando se hace predicción se consideran los valores negativos del correlograma (PennState, 2021).

4.4. Modelos de pronóstico

En los pronósticos de precipitación y temperatura se utilizaron modelos estadísticos lineales y no lineales. En la precipitación se utilizaron los modelos: lineal simple, polinomio de grado dos, modelo de regresión paso a paso y modelo exponencial (modelo no lineal) (Spiegel et al., 2010). Se utilizó la SST como predictor de los modelos lineal simple, polinomial y exponencial. En el modelo paso a paso se utilizaron las covariables: SST, SLP, RHUM, Niño1+2, Niño4, Niño3.4, ONI y TNI. Del mismo modo, en el modelo de

pronóstico de temperatura se utilizaron los modelos lineal simple y polinomial con la SST del Atlántico. En la Figura 4-4 se muestra el flujo de trabajo para desarrollar los modelos de pronóstico.

Figura 4-4. Obtención de los mejores coeficientes de los modelos de predicción.

Primero se leen los datos y se dividen aleatoriamente en dos partes, entrenamiento y testeo. Se utiliza el 70% de los datos para entrenar el modelo (*training*) y el 30% restante de los datos para comprobar el modelo (*test*). Este procedimiento se itera n-repeticiones para cada modelo. Los parámetros del modelo no lineal (*nls*) se calibran por prueba error, una vez que estos convergen se obtienen los mejores parámetros del modelo. En el *script* se restringe un máximo de 1000 iteraciones para obtener los parámetros del modelo *nls*. Los valores iniciales de los parámetros también se iteran a partir de una secuencia de valores (Anexo A4). El resultado del procedimiento es una lista con vectores anidados. Un vector o una lista anidada es una lista que contiene varios componentes, los cuales pueden ser vectores, fórmulas, *data frames*, listas o cualquier otro dato estructurado para cada estación, modelo, etc. En otras palabras una lista anidada es una lista de listas. En R, los datos de las listas anidadas se despliegan por llamadas (*calls*) mediante diversos niveles de paréntesis ([], [[]]) o con la función *unnest*() del paquete {*tidyr*}.

El *script* está diseñado para realizar la comprobación o *test* con el 30% de los datos. Se utilizan los coeficientes R²ajs y AIC para medir el rendimiento de los modelos. Los resultados del *testing* se extraen de la lista anidada. Se elijen los modelos con mejor rendimiento, y con la tabla de coeficientes se realiza la predicción de lluvia/temperatura en los 725 píxeles que conforman el área de estudio. El proceso se repite en un bucle de una misma función con todos los modelos. Los resultados no se guardan en memoria y se optimiza el proceso guardando en un archivo *.csv en el que se van adjuntando de acuerdo con el número de iteraciones (Anexo A3 y Anexo A4).

4.5. Pronóstico de precipitación y temperatura

Los pronósticos de lluvia y temperatura se realizan con los mejores rendimientos de los modelos del procedimiento anterior. Se realizaron alrededor de 590 iteraciones en los modelos de precipitación y temperatura. Para este fin, se une la tabla de rendimiento de modelos con la tabla de coeficientes. Seguido se hace la predicción con la SST de las regiones del Atlántico y los coeficientes de 725 píxeles. De esta manera se construye un *data frame* con las predicciones mensuales. Los datos se guardan en una tabla y se exportan en un archivo de texto. Además, los datos tienen las coordenadas geográficas y se transforman a ráster y se exportan en archivos *.Tif. (Figura 4-5), los códigos se pueden ver en el Anexo A4.

Figura 4-5. Procedimiento para los pronósticos mensuales de precipitación y temperatura, y la desagregación a frecuencia diaria.

A continuación se presentan los modelos utilizados en la predicción de precipitación y temperatura.

4.5.1. Pronóstico con modelos lineales

Se implementan tres modelos lineales (lineal simple, polinomial y regresión paso a paso) para predecir la lluvia en el Sahel occidental. Se utilizó la SST en los modelos regresión lineal simple y polinomial, y todos los predictores en un modelo de regresión paso a paso. En el pronóstico de temperatura se utilizó la SST en los modelos lineal simple y polinomial. El modelo lineal simple se expresa como la Ecuación 4.2, el modelo cuadrático se expresa con la Ecuación 4.3.

$$\widehat{Y} = b_0 + b_1(SST) \tag{4.2}$$

$$\widehat{Y} = b_0 + b_1(SST) + b_2(SST)^2$$
(4.3)

Donde \widehat{Y} representa las predicciones de precipitación y temperatura, (b_0 es la pendiente de la recta, b_1 es el intercepto en el modelo linear simple).

El modelo de regresión paso a paso (stepwise regression) se expresa con la Ecuación 4.4.

$$\hat{Y} = b_0 + b_1 SST_{(lag_{SST})} + b_2 MSLP_{(lag_{MSLP})} + b_3 RHUM_{(lag_{RHUM})} +$$
(4.4)

 $... + b_4 Ni\tilde{n}o1 + 2_{(lag_{Ni\tilde{n}o1+2})} + b_5 Ni\tilde{n}o3.4_{(lag_{Ni\tilde{n}o3.4})} + b_6 Ni\tilde{n}o4_{(lag_{Ni\tilde{n}o4})} + b_6 Ni\tilde{n}o4_{(lag_{Ni$

 $\dots + b_7 ONI_{(lag_{ONI})} + b_8 TNI_{(lag_{TNI})}$

Donde \hat{Y} representa las predicciones de precipitación, b_0 es la pendiente de la recta, $b_1, ..., b_8$ son los coeficientes y SST, ..., TNI son las covariables del modelo.

Para evitar el sobreajuste (*overfitting*) se realizó un análisis de colinealidad, se midió el factor de inflación de la varianza (VIF, por sus siglas en inglés) y se construyó una matriz de correlación. Las variables que están correlacionadas se discriminaron para evitar un sobreajuste del modelo.

4.5.2. Modelo no lineal (nls): exponencial

Se utilizaron los mejores modelos lineales en el modelo exponencial para la estimación de la lluvia. Cuando los parámetros de los modelos no forman una curva, los parámetros del modelo exponencial no convergen, un máximo de 1000 iteraciones se ingresó para garantizar la elección de los coeficientes del modelo. En este modelo se utiliza únicamente con la SST del Atlántico y se realizan 590 repeticiones para obtener los mejores parámetros del modelo. El modelo exponencial se expresa como en la Ecuación 4.5.

$$\hat{Y} = b_0 \ e^{(SST \ b_1)} \tag{4.5}$$

Donde \hat{Y} representa las predicciones de precipitación, *e* es la función exponencial, y b_0 y b_1 son los parámetros del modelo.

4.6. Desagregación temporal

Los modelos de desagregación temporal o interpolación son usados para desagregar e interpolar series temporales de baja frecuencia en series de alta frecuencia. Por ejemplo, series anuales desagregadas en series trimestrales o mensuales, datos mensuales desagregados en datos diarios o subdiarios, etc. El objetivo de la desagregación temporal es encontrar una serie desconocida de alta frecuencia cuya suma, media, primero o último valor sean consistentes con la serie de baja frecuencia conocida (Sax and Steiner, 2013).

En la literatura especializada se presentan algunos métodos para desagregar datos de baja frecuencia en datos de alta frecuencia (Chow and Lin, 1971; Sax and Steiner, 2013; Sittichok et al., 2018). Los modelos de desagregación utilizan registros históricos de una serie indicadora correlacionada con la variable que se desea desagregar. En este estudio se utilizó el método de chow-lin propuesto por Chow and Lin (1971), para desagregar los pronósticos mensuales de precipitación y temperatura en series diarias. Los datos diarios de los productos PERSIANN-CDR y ERA5 se utilizaron como series indicadoras de precipitación y temperatura, respectivamente. Se utilizó el método chow-lin de la librería {*tempdisagg*} del lenguaje R (Sax et al., 2013).

Sittichok (2015) and Sittichok et al. (2018) utilizaron tres métodos basados en el método de Harms and Campbell (1967) como se citó en Sittichok (2015) para desagregar la lluvia estacional de julio-septiembre en datos diarios. (1) Primero, obtuvieron el promedio diario de la cuenca con las observaciones de las estaciones e interpolaron la lluvia por el método de Thiessen. El método de desagregación consiste básicamente en obtener el cociente de la lluvia diaria observada del año (*daily raifall*, DR_{obs,yj}) y la lluvia estacional observada (julio-septiembre) (*observed seasonal rainfall*, SR_{obs,yi}) multiplicada por la lluvia estacional simulada (julio-septiembre) (*simulated seasonal rainfall*, SR_{sim,yi}). (2) El segundo método es similar al método anterior, con la diferencia que no se interpola la lluvia para la cuenca y se realiza la desagregación con la lluvia de la estación meteorológica. (3) En el tercer método los autores también utilizaron el método de Thiessen para obtener el promedio diario

estacional de la cuenca (julio-septiembre). Seleccionaron el año con menor diferencia entre la simulación estacional y la observación estacional para el cálculo de las series de fragmentos (Sittichok, 2015).

4.6.1. Desagregación por el método de Chow-Lin

La librería *tempdisagg* contiene varios métodos para desagregar datos de baja frecuencia en alta frecuencia, el método más común es el de chow-lin (Chow and Lin, 1971; Sax and Steiner, 2013). Si el indicador o indicadores de alta frecuencia abarcan un lapso de tiempo más largo que las series de baja frecuencia, se realiza una extrapolación, utilizando el mismo modelo para la interpolación (Sax et al., 2013; Sax and Steiner, 2013).

La librería *tempdisagg* es ampliamente utilizada en estudios financieros, por ejemplo, en la desagregación de series del producto interno bruto, exportaciones, ventas, entre otros (Islaqm, 2018; Sax and Steiner, 2013). Sin embargo, también se ha utilizado en otros campos de estudio, por ejemplo, Paquet (2019) desagregó los escurrimientos sintéticos diarios en subdiarios con el método de chow-lin en ríos de Francia y Suiza. En el presente estudio se utilizó *tempdisagg* para desagregar la precipitación y la temperatura mensual en datos diarios con el método de chow-lin (Sax et al., 2013; Sax and Steiner, 2013).

El método de Chow and Lin (1971) consiste en ajustar un modelo de regresión lineal entre la serie a estimar (baja frecuencia) y la serie indicadora (alta frecuencia) "anualizadas", suponiendo que los residuos siguen un proceso autorregresivo AR1 (Sax and Steiner, 2013). El modelo chow-lin necesita de los parámetros: serie preliminar (p), la matriz de distribución de los datos de baja y alta frecuencia (D) y la matriz de varianzas y covarianzas (Σ) (Tabla 4-3).

Tabla 4-3. Parámetros del modelo de desagregación para el método de chow-lin.

Método	р	D	Σ
Chow-lin-maxlog	$\hat{eta} X$	$\Sigma C' (C \Sigma C')^{-1}$	$\Sigma_{CL}(ho)$

El parámetro (*p*) se obtiene ajustando los valores de la regresión por mínimos cuadrados generalizados (MCG) de los valores de baja frecuencia con las series indicadoras de alta frecuencia acumuladas a la misma resolución de los datos baja frecuencia, por ejemplo, mensuales, anuales, etc. El parámetro (*D*) es una matriz de distribución (n x n_l), por ejemplo, si se desagregan datos anuales en datos trimestrales, (n) es el número de trimestres, y (n_l) es el número de observaciones anuales. Al multiplicar el número de años por el número de trimestres (n_l x n) se construye la matriz de conversión (*C*) (Sax and Steiner, 2013). Una matriz de conversión de dos años con ocho trimestres se construye de la siguiente manera:

$$C = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Generalmente, para los valores anuales que representan la suma de los valores trimestrales, (*C*) se construye como $I_{nl} \otimes [1, 1, 1, 1]$, el producto de Kronecker de una matriz identidad de tamaño n_l y un vector transpuesto de longitud n/n_l (4, en este ejemplo). El producto de Kronecker (\otimes) de dos matrices de tamaño arbitrario resulta en una matriz de bloques, por ejemplo, años y trimestres, años y meses, meses y días, días en horas (Sax and Steiner, 2013).

Como se mencionó anteriormente, para calcular la matriz de varianzas y covarianzas (Σ), Chow-Lin asume que los residuos trimestrales siguen un proceso autorregresivo (ρ) de orden 1 (AR1). El parámetro (ρ) se puede estimar a partir de la autocorrelación de los residuos de la serie de baja frecuencia observada (Sax and Steiner, 2013).

La desventaja de *tempdisagg* al desagregar una serie demasiada larga a una frecuencia muy alta es el tiempo de procesamiento, el cual puede tardar varios minutos hasta horas, dependiende de la nueva escala de los datos desagregados.

4.6.2. Evaluación del método de desagregación

Debido a que no se cuenta con registros de observaciones diarias continuas, se utilizaron como indicadores los datos diarios del producto PERSIANN-CDR. La lluvia diaria desagregada se validó con los índices: probabilidad de detección (POD, Ecuación 4.6), falsa alarma (FAR, Ecuación 4.7) y el índice de frecuencia bias (FBI, Ecuación 4.8) (Su et al., 2008). Los índices POD, FAR y FBI son muy utilizados para medir el grado de aciertos de la lluvia de productos de satélite con observaciones de campo.

$$POD = \frac{a}{a+c}; \ limites \ [0,1], \ optimo = 1$$
(4.6)

$$FAR = \frac{b}{a+b}; \ limites \ [0,1], \ optimo = 0 \tag{4.7}$$

$$FBI = \frac{a+b}{a+c}; \ limites \ [0,\infty[, \acute{o}ptimo = 1$$
(4.8)

El factor es *a*, cuando ambos valores, observado y pronóstico, son > 1 mm día⁻¹. El factor es *b*, si el dato de pronóstico es > 1 mm día⁻¹ y el observado es \leq 1 mm día⁻¹, por el contrario, el factor es *c*, si el dato de pronóstico es \leq 1 mm día⁻¹ y el valor observado es > 1 mm día⁻¹. El factor es *d*, cuando el dato observado y el de pronóstico son \leq 1 mm día⁻¹ (Tabla 4-4). El valor \leq 1 mm día⁻¹ es igual a cero debido a que este 1 mm día⁻¹ no produce escurrimiento. Además, a la lluvia de los productos de satélite que es \leq 1 mm día⁻¹ se le denomina "efecto llovizna" y en la literatura se sugiere remover, reemplazando la lluvia < 1 mm día⁻¹ por 0 (Piani et al., 2009; Valdés-Pineda et al., 2016).

 Tabla 4-4. Matriz de confusión para índices POD, FAR y FBI.

Factor	Pronóstico	Observado
а	si	si
b	si	no
С	no	si
d	no	no

El POD viene dado por la fracción de ocurrencia de la lluvia de pronóstico que detecta correctamente la lluvia observada. El POD oscila entre 0 y 1, siendo 1 una evaluación perfecta. La tasa de falsa alarma (FAR) mide la fracción de las detecciones de lluvia que fueron realmente falsas alarmas, varía de 0 a 1, con una puntuación perfecta de 0. El índice FBI es el cociente entre el número de eventos de lluvia de pronóstico detectados comparados con el número de eventos observados; puede indicar si hay una tendencia a subestimar (FBI < 1) o sobrestimar los eventos de lluvia (FBI > 1). El rango de FBI es de 0 a infinito, con una puntuación perfecta de 1 (Su et al., 2008).

4.7. Modelación hidrológica

Un modelo hidrológico distribuido se utilizó para simular los caudales en la cuenca del río Bani (alto Niger) y subcuencas del río Senegal. El modelo distribuido es útil porque permite discretizar la cuenca a la misma resolución espacial de los productos de satélite. Se utilizó el modelo distribuido CEQUEAU (Morin, 2009) con los pronósticos diarios (desagregados) de precipitación y temperatura. Se modelaron los escurrimientos diarios del río Bani en Beneny Kegny (alto Niger) y en las subcuencas del río Senegal: Bafing en Bafing Makana, Faleme en Kidira y Bakoye en Oualia. En la modelación de los escurrimientos se consideraron los parámetros del modelo CEQUEAU reportados por Bâ et al. (2018a). Estos parámetros no se recalibraron y se realizó la evaluación del modelo en el periodo 1985-2016. La modelación de los escurrimientos se realizó entre 1985 y 2020, sin embargo, el 2016 es el último año de caudales observados de los que se tiene información accesible en los ríos del área de estudio.

Estudios recientes desarrollados por (Bâ et al., 2018a, 2018b, 2018c) en cuencas del Sahel, utilizaron datos de productos de satélite: precipitación (PERSIANN-CDR y TRMM) y temperatura (ERA-Interim) en el modelo CEQUEAU. Simularon los caudales diarios de las cuencas Bani en Beneny Kegny y subcuencas del río Senegal (Faleme en Kidira, Bafing en Bafing Makana y Bakoye en Oualia). Los resultados de las modelaciones hidrológicas fueron entre satisfactorios y muy buenos (NSE = \sim 0.80) considerando la clasificación de Moriasi et al. (2015).

4.8. Entradas del modelo hidrológico

El modelo CEQUEAU requiere de parámetros fisiográficos de la cuenca para modelar los escurrimientos. Los parámetros se obtienen con la aplicación de Guerra-Cobián (2007) implementado en el SIG Idrisi/TerrSet. La rutina necesita los siguientes datos: (1) un ráster de altitud, se utilizó un MNA de *Shuttle Radar Topography Mission* (SRTM) a 0.25° de resolución espacial (Jarvis et al., 2008); (2) un vector con la ubicación de las estaciones meteorológicas; (3) un vector con la ubicación de las estaciones hidrométricas; y (5) un ráster de uso y cobertura del suelo. Además, de caudales observados en las estaciones hidrométricas, para la calibración y validación del modelo. En este estudio se utilizaron los parámetros de CEQUEAU del estudio de Bâ et al. (2018a). Estos parámetros se utilizaron con los datos de pronóstico (precipitación y temperatura) y se evaluó el modelo en el periodo 1985-2016.

4.9. Eficiencia del modelo hidrológico

El rendimiento de los modelos hidrológicos se evaluó con los criterios NSE y porcentaje bias (PBIAS) para medir la bondad de ajuste y el error, respectivamente. Además, se utilizaron el error relativo, la raíz del error cuadrático medio y el error medio absoluto.

A continuación se describen los criterios matemáticos utilizados para medir el rendimiento del modelo hidrológico, como también en la evaluación de los productos de satélite.

4.9.1. Criterios de información Akaike

El criterio de información Akaike (*AIC*) (Akaike, 1974) se utiliza en la selección de modelos. Este criterio considera la bondad de ajuste y la complejidad del modelo,

basándose en la penalización por el número de parámetros. Un modelo con mayor cantidad de parámetros aumenta la probabilidad del ajuste. Sin embargo, esto puede resultar en un sobreajuste del modelo y es penalizado por el criterio *AIC* (Ecuación 4.9).

$$AIC = 2k - 2\ln(L) \tag{4.9}$$

Donde k es el número de parámetros del modelo, L es el valor de máxima verosimilitud para el modelo estimado.

4.9.2. Coeficiente de determinación

El coeficiente de determinación (R^2) (Ecuación 4.10) es utilizado comúnmente para medir la fuerza de la correlación entre las variables explicada y explicativas. En este estudio se utiliza el R^2 como criterio estadístico para medir la bondad de ajuste de la lluvia o temperatura de pronóstico y los datos observados de las estaciones meteorológicas. El R^2 mide la proporción de la varianza explicada por el modelo. El rango de R^2 varía entre 0 y 1, siendo 1 el valor óptimo y los valores mayores a 0.50 son considerados como aceptables (Moriasi et al., 2007).

$$R^{2} = \left(\frac{\sum_{i=1}^{n} \left(V_{obs_{i}} - \bar{V}_{obs}\right) \left(V_{pro_{i}} - \bar{V}_{pro}\right)}{\left(\sum_{i=1}^{n} \left(V_{obs_{i}} - \bar{V}_{obs}\right)^{2}\right)^{1/2} \left(\sum_{i=1}^{n} \left(V_{pro_{i}} - \bar{V}_{pro}\right)^{2}\right)^{1/2}}\right)^{2}$$
(4.10)

Donde V_{obs_i} y V_{pro_i} son, respectivamente, la variable observada y pronosticada del mes *i*, \bar{V}_{obs} y \bar{V}_{pro} son, respectivamente, la media observada y pronosticada, y *n* es el número de datos.

4.9.3. Coeficiente de determinación ajustado

El coeficiente de determinación ajustado (R^2ajs) mide el porcentaje de variación de la variable dependiente explicada por todas las variables independientes. El R^2ajs penaliza la

adición de coeficientes en el modelo por el aumento de variables independientes. El rango de $R^2 a j s$ varía entre 0 y 1, siendo 1 el valor óptimo (Ecuación 4.11).

$$R^{2}ajs = 1 - \left(\frac{n-1}{n-k-1}\right) * \left(1 - R^{2}\right)$$
(4.11)

Donde *n* es el número de observaciones de la muestra y *k* es el número de variables independientes. El aumento de variables independientes aumenta el valor del cociente $\left(\frac{n-1}{n-k-1}\right)$ y por lo tanto disminuye el valor de R^2 .

4.9.4. Coeficiente de correlación de Pearson

El coeficiente de correlación de Pearson (r) (Ecuación 4.12) también se utilizó para comparar las series de SST ERA5 y PERSIANN-CDR. El coeficiente de correlación de Pearson es una medida de la covarianza adimensional, mide la fuerza y dirección de la relación linear entre dos variables en un *scatter plot*. Los valores de r están escalados entre -1 y 1. Un valor de r cercano 1 significa una correlación fuerte positiva, las dos variables incrementan al mismo tiempo, un valor de r cercano a -1 indica una correlación fuerte con dirección negativa, una variable aumenta y mientras la otra disminuye. El valor de r = 0 es una relación no linear o asociación monotónica.

$$r = \frac{\sum_{i=1}^{n} \left(V_{obs_i} - \bar{V}_{obs} \right) \left(V_{pro_i} - \bar{V}_{pro} \right)}{\left(\sum_{n=1}^{n} \left(V_{obs_i} - \bar{V}_{obs} \right)^2 \right)^{1/2} \left(\sum_{n=1}^{n} \left(V_{pro_i} - \bar{V}_{pro} \right)^2 \right)^{1/2}}$$
(4.12)

Donde V_{obs_i} y V_{pro_i} son, respectivamente, la lluvia observada y pronosticada del mes *i*, \bar{V}_{pro} y \bar{V}_{pro} son la lluvia media observada y pronosticada, respectivamente, y *n* es el número de datos. La lluvia se presenta en la unidad de milímetros.

No existe una regla universal para interpretar los valores de *r*, sin embargo, existen algunos patrones que tienen alguna semejanza en los rangos para interpretar cualitativamente. En la

mayoría de investigaciones, los valores > 0.9 indican una relación lineal fuerte, mientras que valores < 0.1 es una relación insignificante, los valores intermedios son muy discutibles. Por ejemplo, un valor de r = 0.70 puede ser interpretado como relación fuerte o moderada (Tabla 4-5) (Khamis, 2008; Rumsey, 2020).

Correlación (r)								
(Rumsey, 2020)	Interpretación (relación lineal)	(Khamis, 2008)	Interpretación (relación lineal)					
1.00 (-1.00)	Perfecta	> 0.80 (-0.80)	Relación fuerte					
> 0.70 (-0.70)	Fuerte	> 0.50 (-0.50)	Relación moderada					
> 0.50 (-0.50)	Moderada	> 0.20 (-0.20)	Relación débil					
> 0.30 (-0.30)	Débil	0.00	Sin relación					
0.00	Relación no linear							

 Tabla 4-5. Interpretación del coeficiente de correlación de Pearson.

4.9.5. Eficiencia de Nash-Sutcliffe

La eficiencia del modelo hidrológico se mide con el coeficiente de Nash (Ecuación 4.13) propuesto por Nash y Sutcliffe (Nash and Sutcliffe, 1970). Se utiliza para determinar la magnitud relativa de la varianza residual y la varianza de las observaciones. El NSE se puede determinar calculando la relación entre el error cuadrático medio de las observaciones y predicciones, y la varianza de las observaciones, a 1 se le resta relación para tener el valor NSE. El criterio NSE varía entre $-\infty$ y 1, cuando el NSE es igual a 1, indica una simulación perfecta del modelo, si el NSE es igual a 0, las predicciones del modelo son tan precisas como la media de los datos observados, si el NSE es entre $-\infty < NSE < 0$, la media observada es mejor predictor que el modelo (Moriasi et al., 2015, 2007).

$$NSE = 1 - \frac{\sum_{i=1}^{n} (V_{sim_i} - V_{obs_i})^2}{\sum_{i=1}^{n} (V_{obs_i} - \bar{V}_{obs})^2}$$
(4.13)

101

Donde V_{obs_i} y V_{sim_i} son los caudales observados y simulados en el paso de tiempo i y \overline{V}_{obs} es el caudal medio observado. El paso de tiempo puede ser diarios, mensual o anual.

4.9.6. Porcentaje bias

El porcentaje bias (PBIAS) (Ecuación 4.14) se utiliza para determinar que tan bien el modelo simula las magnitudes promedio para la respuesta de salida de interés (Gupta et al., 1999). El PBIAS es útil en simulaciones continuas a largo plazo y permite identificar el sesgo de simulación del modelo promedio (sobrestimados vs. subestimados). El rango del PBIAS varía entre $-\infty$ y ∞ , siendo 0 el valor óptimo (Moriasi et al., 2015). Los valores positivos indican que el modelo sobrestima los valores observados y los negativos subestiman los valores observados.

$$PBIAS = \frac{\sum_{i=1}^{n} (V_{pro_i} - V_{obs_i})}{\sum_{i=1}^{n} (V_{obs_i})} \times 100$$
(4.14)

Donde V_{obs_i} y V_{pro_i} son, respectivamente, la variable observada y simulada o pronosticada al paso de tiempo *i*.

4.9.7. Error relativo

El error relativo (ER) (Ecuación 4.15) es el cociente entre el error absoluto de los datos simulados y los datos observados. Indica el desajuste entre los datos observados y modelados, expresado en términos de valores de cocientes y porcentajes (Moriasi et al., 2015).

$$ER = \frac{V_{pro_i} - V_{obs_i}}{V_{obs_i}} \times 100 \tag{4.15}$$

102

Donde V_{obs_i} y V_{pro_i} son, respectivamente, la variable observada y simulada o pronosticada al paso de tiempo *i*.

4.9.8. Raíz del error cuadrático medio

La raíz del error cuadrático medio (RMSE, por sus siglas en inglés) (Ecuación 4.16) es la raíz cuadrada del error cuadrático medio (MSE). El MSE también se conoce como error estándar de la estimación en el análisis de regresión. El RMSE se mide en las mismas unidades que la respuesta de salida del modelo de interés, y es representativo del tamaño de un error típico. Es una medida de uso frecuente para medir el error entre los datos observados y las salidas de un modelo. (Moriasi et al., 2015).

$$RMSE = \left(\frac{1}{n}\sum_{i=1}^{n} (V_{obs_i} - V_{pro_i})^2\right)^{1/2}$$
(4.16)

Donde V_{obs_i} y V_{pro_i} son, respectivamente, la variable observada y simulada o pronosticada al paso de tiempo *i*.

4.9.9. Error medio absoluto

El error absoluto medio (MAE, por sus siglas en inglés) (Ecuación 4.17) es la diferencia entre dos variables continuas del mismo fenómeno (observado y modelado). Similar al RMSE, se mide en las mismas unidades del resultado de la modelación, es fácil interpretar el resultado, sin embargo, no se puede comparar con otros modelos. El MAE y el RMSE funcionan bien para las simulaciones continuas a largo plazo y son útiles para determinar los intervalos de confianza en las predicciones de los modelos, y es posible incorporar la incertidumbre de la medición (Moriasi et al., 2015).

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |V_{obs_i} - V_{pro_i}|$$
(4.17)

103

Para medir el rendimiento de los modelos hidrológicos, Moriasi et al. (2015) recomiendan categorizar la eficiencia de las modelaciones en 4 categorías, considerando los criterios estadísticos NSE, R² y PBIAS. En la Tabla 4-6 se presenta un resumen de los criterios para medir la eficiencia a escala de cuenca hidrográfica.

	1 /	5 (. ,
Eficiencia	NSE (-)	PBIAS (%)*	R ² (-)
Muy bueno	NSE > 0.80	pBias $< \pm 5$	$R^2 > 0.85$
Bueno	$0.70 < NSE \le 0.80$	$\pm 5 \le pBias \le \pm 10$	$0.75 < R^2 \le 0.85$
Satisfactorio	$0.50 < NSE \le 0.70$	$\pm 10 \le pBias \le \pm 15$	$0.60 < R^2 \le 0.75$
No satisfactorio	$NSE \leq 0.50$	pBias $\geq \pm 15$	$R^2 \leq 0.60$

Tabla 4-6. Criterios para medir la eficiencia de un modelo hidrológico (Moriasi et al., 2015).

* valores absolutos

Capítulo 5: Resultados

En este capítulo se presentan los resultados de la investigación. En la primera parte se muestran las evaluaciones de los datos de satélite. Seguido se exponen las evaluaciones de los modelos de pronóstico de precipitación y temperatura a nivel mensual. La desagregación de los pronósticos en datos diarios. Finalmente, se presentan los resultados de los modelos de escurrimiento de las cuencas del área de estudio.

5.1. Análisis de base de datos

5.1.1. Validación de los datos PERSIANN-CDR

Se evaluaron las lluvias del producto PERSIANN-CDR con los datos observados de 20 pluviómetros (punto/píxel) en el periodo 1983-2015 (Tabla 5-1). Se observó una correlación alta en el 90% de las estaciones, $R^2 > 0.80$. Dos pluviómetros localizados en el norte del área de estudio tuvieron R^2 de 0.71 y 0.77 (Matam y Tidjikja, respectivamente), que fueron los coeficientes de determinación más bajos. En relación con el PBIAS, el 73% de las estaciones tuvieron un sesgo < |15|%. A pesar de que se compara una área grande (0.25° x 0.25°, ~625 km²), el producto PERSIANN-CDR reproduce bien la lluvia del Sahel,

esto también fue observado por Bâ et al. (2018a) en 18 estaciones localizadas en las cuencas Bani y Senegal. En la Figura 5-1 se muestra la correlación de 9 estaciones meteorológicas.

Nombre	\mathbf{R}^2	PBIAS (%)	MAE (mm)	Ν	ObsY (mm año ⁻¹)	CdrY (mm año ⁻¹)	ER (%)
Tidjikja	0.772	-22	4	298	61	74	21
Kiffa	0.755	-4	10	286	166	174	5
Nema	0.671	-14	10	286	136	155	14
Matam	0.711	-6	12	298	188	199	6
Nioro-Du-Sahel	0.808	-20	14	225	209	250	20
Bakel	0.842	-5	17	293	389	408	5
Kayes	0.855	-18	17	215	296	348	18
Goudiry	0.839	-20	18	298	398	479	20
Segou	0.881	-11	17	261	401	445	11
San	0.898	-3	14	262	428	442	3
Kita	0.920	-14	19	224	463	528	14
Kedougou	0.837	-6	28	298	756	801	6
Bamako-Ville	0.878	-1	23	208	485	490	1
Bamako-Senou	0.891	-9	19	285	585	635	9
Labe	0.870	-25	44	271	883	1106	25
Siguiri	0.854	-10	27	291	752	831	11
Sikasso	0.889	1	22	263	701	691	1
Mamou	0.851	-11	41	297	1157	1288	11
Odienne	0.860	-5	30	142	463	484	5
Korhogo	0.779	9	33	113	354	323	9

Tabla 5-1. Validación de la precipitación del producto PERSIANN-CDR con los datos observados de estaciones meteorológicas entre 1983 y 2015.

N = datos mensuales concomitantes, ObsY = precipitación observada media anual, CdrY = precipitación PERSIANN-CDR media anual, ER = error relativo.

Figura 5-1. Validación de la lluvia del producto PERSIANN-CDR con datos observados en pluviómetros, muestra de nueve estaciones (punto-píxel), en el periodo 1983-2015.

Los resultados mostrados en la Figura 5-1 son congruentes con los reportados por Bâ et al. (2018a). Los autores de dicho estudio compararon la lluvia estimada del producto PERSIANN-CDR con la lluvia observada en los pluviómetros (pluviómetro-píxel) en el periodo 1995-2015. La correlación, medida con el coeficiente de determinación fue alta ($R^2 = 0.76 y 0.90$) y el error medido con el RMSE fue entre 9 y 74 mm mes⁻¹ (Bâ et al., 2018a).

La precipitación de las cuencas localizadas al sur-oeste, tienen un clima transicionalecuatorial. En promedio reciben más lluvia que las cuencas localizadas cerca del desierto del Sahara. La precipitación de las cuencas de estudio, evaluada con el producto PERSIANN-CDR (Figura 5-2) representan el patrón del WAM (Bâ et al., 2018a; Gado Djibo et al., 2015a; Sittichok et al., 2016). Las lluvias del WAM empiezan en mayo y finalizan en octubre (Folland et al., 1991), siendo alrededor de julio-agosto-septiembre los eventos más representativos (Bâ et al., 2018a; Thorncroft and Lamb, 2005). La precipitación promedio entre mayo y octubre fue de ~1080 mm y representa el 97% de la lluvia anual, se puede decir que las lluvias del Sahel se limitan entre los meses mayooctubre (Biasutti, 2019). Los eventos máximos del WAM ocurren entre julio-septiembre y representan el 70% de la precipitación anual, en estos meses el promedio es de 770 mm año⁻¹.

Figura 5-2. Precipitación mensual por cuenca, PERSIANN-CDR, 1983-2018.

Los datos PERSIANN-CDR reprodujeron muy bien la lluvia del WAM en las cuatro cuencas estudiadas. Además, se observó la variabilidad temporal y el gradiente de lluvia con la latitud (Figura 5-3).

Figura 5-3. Distribución espacio-temporal de la lluvia mensual PERSIANN-CDR sobre África occidental, en el periodo1983-2020.

5.1.2. Validación de temperatura del aire

La temperatura del producto Ta2m-ERA5 sobrestimó la temperatura observada en las estaciones meteorológicas, excepto en la estación Mamou (Tabla 5-2). El error absoluto fue \sim 7 °C y aproximadamente 33% de error relativo. Sin embargo, la correlación fue alta, en promedio el R² fue 0.6, en las estaciones localizadas en el norte del área de estudio, por ejemplo en Tidjikja el R² fue 0.98 y el valor más bajo fue en Labe (R² = 0.034), localizada en el sur del área de estudio.

Nombre	\mathbf{R}^2	PBIAS (%)	MAE (°C)	Ν	ObsY (°C año ⁻¹)	EraY (°C año ⁻¹)	ER (%)
Tidjikja	0.981	-26	6	263	22	28	27
Kiffa	§	§	§	§	§	§	§
Nema	§	§	§	§	§	§	§
Matam	§	§	§	§	§	§	§
Nioro-Du-Sahel	§	§	§	§	§	§	§
Bakel	0.715	-33	8	81	23	30	30
Kayes	§	§	§	§	§	§	§
Goudiry	§	§	§	§	§	§	§
Segou	§	§	§	§	§	§	§
San	§	§	§	§	§	§	§
Kita	§	§	§	§	§	§	§
Kedougou	§	§	§	§	§	§	§
Bamako-Ville	0.730	-24	5	212	22	27	23
Bamako-Senou	0.832	-24	5	179	22	28	27
Labe	0.034	-65	10	23	15	24	60
Siguiri	0.701	-31	6	24	21	27	29
Sikasso	§	§	§	§	§	§	§
Mamou	0.889	19	6	238	30	24	20
Odienne	§	§	§	§	§	§	§
Korhogo	§	§	§	§	§	§	§

Tabla 5-2. Evaluación de la temperatura del producto Ta2m-ERA5 en el punto-píxel.

N = datos mensuales concomitantes, ObsY = temperatura observada media anual, EraY = temperatura ERA5 media anual, ER = error relativo.

En Bâ et al. (2018a) explican la relación de la temperatura ERA-Interim con la topografía de un MNA de 3 segundos de arco de resolución (0.0008333°). Consideraron la diferencia de altitud de los píxeles del MNA en el pixel del producto de satélite de 0.25° de
resolución. Un pixel del producto ERA-Interim albergan 300 píxeles del MNA (0.25°/0.00083333°). Los autores reportaron que existe una estrecha relación entre el coeficiente de correlación con la altitud. Las estaciones localizadas en el norte, con topografía regular y altitud baja (por ejemplo Tidjikja y Bakel), tuvieron correlaciones altas, por el contrario, en la parte alta (Labe y Mamou) observaron correlaciones bajas. Debido a esto, en este estudio no se corrigió el error y se utilizaron los datos Ta2m-ERA5 sin corregir. El producto Ta2m-ERA5 reprodujo muy bien los patrones de la temperatura observada y la variabilidad espacio-estacional. Los meses más cálidos, temperatura > 30 °C, fueron entre junio y septiembre, y los meses más fríos, temperatura entre 15 °C y 20 °C, fueron en diciembre y enero, principalmente en el norte de Mali y Mauritania (Figura 5-4).

Figura 5-4. Distribución espacio-temporal de la temperatura media mensual de África occidental, datos Ta2m-ERA5 en el periodo1983-2020.

5.1.3. Validación de SST

La validación del producto SST Figura 5-5 se realizó con los datos observados de las boyas del Atlántico localizadas frente a la costa de África occidental. Se utilizó el coeficiente de

determinación para medir la bondad de ajuste entre los datos observados y estimados por el producto de satélite y el PBIAS para medir el sesgo. Los R^2 fueron entre 0.93 y 0.98, el sesgo de los datos fue < 5% en las cinco boyas, y el PBIAS fue entre 0.20% y 1.70%.

Figura 5-5. Validación del producto SST de ERA5 con los datos de temperatura del mar de las boyas localizadas frente a las costas de África occidental y el Golfo de Guinea, entre 1997 y 2019.

Frente a la costa de Mauritania y Senegal, se localizan las boyas 13002 y 13001, hacia el sur la boya 31006, todas estas cuentan con más de 120 registros mensuales. Otras dos boyas se localizan en el Golfo de Guinea y tienen más de 180 datos. Las anomalías de la temperatura de la superficie del mar, tiene una tendencia positiva.

5.2. Teleconexiones y clasificación del Atlántico

La SST del Atlántico se dividió en tres regiones. El resultado del ACP indicó que dos principales componentes explican el 97.3% de la varianza (Tabla 5-3 y Figura 5-6). Los componentes principales redujeron la dimensión de un conjunto de 456 imágenes ráster en 2 componentes. Este procedimiento se realizó para la MSLP y RHUM y los resultados fueron similares. Los dos primeros componentes explicaron el 96.0% y el 98.0%, respectivamente, la varianza de MSLP y RHUM.

		Impo	ortancia de	los compon	entes	
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	Comp. 6
Desviación estándar	18.536	9.396	1.939	0.986	0.829	0.700
Proporción de la varianza	0.774	0.199	0.008	0.002	0.002	0.001
	Comp. 7	Comp. 8	Comp. 9	Comp. 10	Comp. 11	Comp. 12
Desviación estándar	0.635	0.592	0.543	0.516	0.465	0.449
Proporción de la varianza	0.001	0.001	0.001	0.001	0.000	0.000

Tabla 5-3. Componentes principales de la SST del Atlántico tropical en el periodo 1983-2020.

Comp. = componente.

Componentes principales

Figura 5-6. Representación de los componentes principales que explican la variabilidad de la SST.

Los las imágenes ráster de los componentes principales se utilizaron para crear un clúster y se clasificaron los datos SST, MSLP y RHUM del Atlántico tropical en regiones homogéneas. El método de silueta indicó el valor k, en el caso de la SST, k = 3, es el número óptimo de conglomerados SST para el Atlántico tropical (Figura 5-7).

Figura 5-7. Número óptimo de conglomerados de SST en el Atlántico.

En la Figura 5-8 se presenta la clasificación de SST, MSLP y RHUM para el Atlántico tropical. La SST se dividió en tres regiones de sur a norte: s1 o región A (SST del extremo sur del Golfo de Guinea), s2 o región B (SST del Atlántico tropical central) y s3 o región C

(SST del Atlántico tropical norte). La MSLP se dividió en dos regiones, m1 (MSLP del Atlántico tropical sur) y m2 (MSLP del Atlántico tropical norte). La RHUM se dividió en tres regiones, r1 (RHUM del Atlántico tropical sur), r2 (RHUM del Atlántico tropical central) y r3 (RHUM del Atlántico tropical norte).

En los modelos de lluvia (lineal simple, polinomial y exponencial) y en los modelos lineales de temperatura se utilizaron únicamente los datos SST: regiones s1 (región A), s2 (región B) y s3 (región C). En el modelo múltiple se utilizaron los datos SST, MSLP y RHUM de las regiones de la Figura 5-8, además, de las regiones Niño del Atlántico tropical. Las regiones s1, ... m1, ..., r3 se combinaron en el modelo multivariado, por ejemplo s1m1r1, s1m1,r2, ... s3,m2,r2, etc.

Figura 5-8. Clasificación del Atlántico tropical entre 20°S y 40°N. Las letras significan "s" son para SST, "m" para MSLP y "r" para RHUM, la numeración empieza en el golfo de guinea (1) hasta el Atántico tropical norte (3).

5.2.1. Correlación SST versus precipitación

En la Figura 5-9 se presentan los correlogramas de las series temporales del predictor SST y la precipitación de las regiones del Atlántico. Las series se traslaparon y se ajustaron con el mejor lag. Se observó que el tiempo de desfase de la precipitación tiene un lag de 11 meses con una significación del 95%. Gado Djibo et al. (2015a y 2015b) encontraron que el desfase entre la lluvia y los predictores oceánico-atmosféricos varía entre 0, 2 y 12 meses, en la cuenca del río Volta, en el Sahel central. En la Figura 5-9 se observa que la SST del golfo de Guinea tuvo correlación alta con un lag de 5 meses, la SST del Atlántico tropical central con lag de 10 meses y la SST del Atlántico tropical norte tuvo correlación alta con lag de 11 meses. El coeficiente de correlación más alto se obtuvo con la SST del Atlántico tropical norte (región C, r = 0.741).

Figura 5-9. Lag entre las series de SST y PERSIANN-CDR, de las Regiones A (SST1), B (SST2) y C (SST3).

El análisis de los correlogramas se confirmó con la gráfica ráster de la Figura 5-10, donde se muestra la correlación SST~precipitación en función de la región y el lag. En el eje x se representan las regiones SST del Atlántico: A, B y C, respectivamente, golfo de Guinea (SST1), Atlántico tropical central (SST2) y Atlántico tropical central norte (SST3). En el eje y se ordenan los lags entre 0 y 12 meses. El color "verde claro" indica correlaciones negativas y el "azul oscuro" muestra correlaciones positivas. En la región A la correlación fue fuerte con lag de 5 meses, en la región B la correlación fue alta con lag de 10 meses y con la región C la correlación fue alta con lag de 11 meses. Se observó que el coeficiente de correlación varía con relación a la Latitud esto se corroboró con la ubicación de las estaciones de la Figura 5-10. Las estaciones están ordenadas de norte a sur, empezando por la parte superior izquierda, la estación Tidjikja hasta la parte inferior derecha, la estación Korhogo, localizada en la parte más meridional del área de estudio.

Para las covariables utilizadas en el modelo paso a paso (*stepwise regression*) se encontró las correlaciones más altas con los siguientes pasos de tiempo: MSLP, lag = 12 meses; RHUM, lag = 12 meses; Niño1+2, lag = 11 meses; ONI, lag = 11 meses; y TNI, lag = 11 meses.

Figura 5-10. Coeficientes de correlación de SST vs la precipitación con lag de 0 y 12 meses, donde SST1, SST2 y SST3 son, respectivamente, la SST del Golfo de Guinea, SST del Atlántico tropical central y SST del Atlántico tropical norte. Los recuadros rojos indican la correlación más alta.

En la Figura 5-11 se muestra las correlaciones entre la SST de la región SST3 con la luvia PERSIANN-CDR. Los pasos de tiempo van de -1 mes hasta -15 meses. Se observa que alrededor de once meses la correlación es más fuerte 0.73, comparado con los otros lag de \sim 0.60 y \sim 0.30.

Figura 5-11. lag h = t-0 a h = t-15, para la región SST1 (Golfo de Guinea).

5.2.2. Selección de covariables (stepwise regression)

Estadístico F: 297.8 con 8 y 436 DF, p-valor: < 2.2e-16

En la Tabla 5-4 se presenta un resumen de los coeficientes del modelo multivariado con una muestra del conjunto de datos (estación Labe). Se observó que el modelo es significativo (p valor < 0.05), por lo tanto se rechazó la hipótesis nula (H_0 = el modelo no es válido) y se aceptó la hipótesis alterna (H_1 = el modelo es válido). El R²ajs fue 0.843, es decir, más del 84% de la variabilidad de la precipitación fue explicada por el modelo multivariado, considerando todas las covariables. Sin embargo, solo la SST, Niño4, ONI, TNI y RHUM son significativos.

Coeficientes	Estimación	Error Std.	t valor	Pr(> t)					
Intercepto	2149.74	2030.80	1.059	0.290383					
SST	76.47919	4.6470	16.458	0.000001***					
MSLP	-1.94418	1.9606	-0.992	0.321944					
RHUM	-3.32398	1.8961	-1.753	0.080300.					
Niño12	5.93726	4.6201	1.285	0.199444					
Niño4	-55.24599	14.2881	-3.867	0.000127***					
Nino3.4	-0.07106	10.8342	-0.007	0.994770					
ONI	29.87456	10.5382	2.835	0.004798**					
TNI	-11.4143	3.8748	-2.946	0.003394**					
Códigos de Significación: 0 '**	**' 0.001	* 0.05 '.' 0.1 ' ' 1							
Error residual estándar: 66.24 con 436 grados de libertad									
R ² : 0.8453, R ² ajs: 0.8425									

Tabla 5-4. Coeficientes del modelo multivariado de la precipitación con 8 covariables.

En la Figura 5-12 se muestra la matriz de correlación con todas las variables. Se observó que la precipitación y la SST tienen correlación alta, r = 0.914 ($R^2 = 0.835$) y significativa. Así también, la precipitación con la RHUM tienen una correlación poco fuerte (0.642) y significativa. Sin embargo, hay que tener en cuenta que la humedad también tuvo una correlación fuerte con la SST (r = 0.744). Para evitar la multicolinealidad se realizó un análisis de inflación de varianza del modelo, el resultado arrojó los valores de la Tabla 5-5. El resultado del VIF mostró valores altos en la MSLP, ONI, Niño4 y Niño3.4, lo que indica que están incrementando la varianza del modelo.

Figura 5-12. Matriz de correlación de la precipitación con 8 covariables.

Tabla 5-5. Análisis de	e inflación de l	la varianza	con 8 covariables.
------------------------	------------------	-------------	--------------------

SST	MSLP	RHUM	Niño1+2	Niño4	Niño3.4	ONI	TNI
5.69	1.33	4.35	4.89	10.71	12.13	8.42	3.79

En una segunda corrida se utilizaron las variables SST, RHUM, Niño1+2 y TNI. Si bien la SST es mayor a 5 (Tabla 5-5), se eligió porque la SST es variable principal y está fuertemente correlacionada con la precipitación del Sahel (Folland et al., 1991; Janicot et al., 2001; Thorncroft and Lamb, 2005). Los resultados de varias corridas con otros conjuntos de datos se observó resultados similares a los mostrados en la Figura 5-12 y Tabla 5-5.

Con las nuevas variables (Tabla 5-6) el R²ajs se redujo a 0.837, sien embargo se tiene mayor confianza de que las variables seleccionadas no incrementan la varianza y el sobreajuste (*overfitting*) de las modelaciones.

 SST
 RHUM
 Niño1+2
 TNI

 5.812845
 2.43843
 3.878467
 1.203158

Tabla 5-6. Análisis de inflación de la varianza con 4 covariables.

Las variables de la Tabla 5-6 se utilizaron en el modelo lineal de regresión paso a paso (*stepwise regression*), SST, RHUM, Nino1+2 y TNI. En el modelo paso a paso se seleccionó método *backward selections* (selección hacia atrás) es decir, se ingresan todas las variables y el modelo selecciona las variables que mejor ajustan el modelo.

5.2.3. Correlación SST versus temperatura

El lag entre la SST y la temperatura varía con respecto a la región SST. Al parecer no parece variar con la ubicación de la estación meteorológica. Con la SST del golfo de Guinea se tiene retrasos de 6-8, 9 meses. Sin embargo, el lag de lluvia es de 11 meses. Para que las series de precipitación y temperatura sean consistentes en la modelación hidrológica, se eligieron los desfases mayores a 11 meses. Con la SST del Atlántico tropical norte el lag varía entre 14 y 16 meses. Es por ello que en el pronóstico de temperatura se eligió un lag de 16 meses con los modelos lineal simple y polinomial.

Figura 5-13. Coeficientes de correlación de SST vs la temperatura con lag de 6 y 18 meses, donde SST1, SST2 y SST3 son, respectivamente, la SST del Golfo de Guinea, SST del Atlántico tropical central y SST del Atlántico tropical norte. Los recuadros azules indican la correlación más alta para propósitos de este estudio.

5.3. Pronóstico de variables climáticas

5.3.1. Pronóstico de la lluvia

En la Figura 5-14 se muestra la distribución espacial de los mejores modelos de pronóstico de la lluvia en las cuencas Bani y Senegal. En el 90% del área, el modelo polinomial con la SST del Atlántico tropical norte y lag de 11 meses arrojaron los mejores rendimientos. En algunos píxeles del sur de las cuencas Bani y Senegal, en las estaciones: Mamou, Labe, Odienne y Korhogo, los rendimientos fueron mejores con el modelo de regresión paso a paso. En el noroeste de la cuenca Senegal, unos píxeles tuvieron mejor rendimiento con el modelo polinomial y la SST del golfo de Guinea. Además, en el norte del área de estudio, incluyendo la estación Tidjikja, los modelos no fueron capaces de reproducir la lluvia, considerando los criterios de selección $R^2ajs > 0.5$ y pvalor < 0.05.

Figura 5-14. Mejores modelos de predicción de lluvia en cada píxel, representados por la región y el modelo. Se considera el R²ajs > 0.50, p-valor < 0.05 y AIC menor. Cuenca Bani en Beneny Kegny y Senegal en Bakel.

En el histograma de la Figura 5-15 se muestra la distribución del rendimiento de los modelos considerando el NSE. Se observó que el modelo polinomial con la SST del norte del Atlántico tropical prevalece con NSE promedio de ~0.85. Pocos píxeles del sur y del norte son reproducidos por otros modelos y otras regiones del Atlántico. Sin embargo, la eficiencia no fue alta, excepto algunos píxeles del sur con el modelo paso a paso y el Atlántico tropical norte.

Figura 5-15. Distribución del coeficiente NSE para cada modelo y región SST.

En la Tabla 5-7se muestra el rendimiento de los modelos en la ubicación de las estaciones meteorológicas. El R² fue mayor a 0.697 y el NSE fue entre 0.673 y 0.905. El rendimiento de los modelos fue muy bueno en el sur y la parte media del área de estudio de acuerdo con los criterios de (Moriasi et al., 2015).

Estación	Región	Modelo	R ² ajs	NSE	AIC	BIC
Bakel	SST1	poly	0.785	0.697	3037	3052
Bamako-Senou	SST3	poly	0.883	0.833	3057	3072
Bamako-Ville	SST3	poly	0.883	0.865	3027	3042
Goudiry	SST3	poly	0.768	0.820	3182	3197
Kayes	SST3	poly	0.807	0.754	3132	3146
Kedougou	SST3	poly	0.803	0.821	3347	3362
Kiffa	SST1	poly	0.726	0.629	2802	2817
Kita	SST3	poly	0.867	0.872	3143	3157
Korhogo	SST3	step	0.801	0.801	3081	3118
Labe	SST3	step	0.851	0.836	3408	3430
Mamou	SST3	step	0.825	0.815	3420	3446
Matam	SST1	poly	0.697	0.673	2890	2905
Nema	SST3	poly	0.699	0.685	2752	2767
Nioro-Du-Sahel	SST3	poly	0.806	0.767	2990	3005
Odienne	SST3	step	0.838	0.817	3246	3272
San	SST3	poly	0.853	0.879	2985	3000
Segou	SST3	poly	0.855	0.843	2983	2998
Siguiri	SST3	poly	0.836	0.860	3266	3281
Sikasso	SST3	poly	0.859	0.905	3116	3131

Tabla 5-7. Rendimiento de los modelos de precipitación en el punto pixel, con el 30% de los datos, p-valor < 0.05 y R2ajs > 0.5.

SST1 = SST del Golfo de Guinea, SST2 = SST de la parte media del Atlántico tropical, SST3 = SST, poly = modelo polinomial, step = modelo de regresión paso a paso.

Una vez que se quitaron las restricciones de los criterios de selección se modelaron todos los píxeles del área de estudio. Si bien los modelos no reproducen la lluvia del norte, se conoce que la lluvia es mínima, ~50 mm año⁻¹, por lo tanto, es insignificante para generar escurrimiento en la cuenca Senegal (Bâ et al., 2018a, 2013b).

En la Figura 5-16 se muestra la distribución del NSE con el modelo lineal. Se observó que el rendimiento de los modelos de lluvia fue mejor en el sur y disminuye en el norte de la cuenca Senegal, cerca del desierto del Sahara. La región SST del Atlántico tropical norte generó los mejores resultados medidos con el NSE, por el contrario, la región del Atlántico central generó los coeficientes NSE más bajos, esto puede deberse a la migración de la ZCIT que coincide con esta región (Gado Djibo et al., 2015b, 2015a).

Figura 5-16. Distribución del NSE con el modelo lineal (lm) en las regiones del Atlántico.

La Figura 5-17 es similar a la anterior, con el modelo polinomial. Este modelo produjo los mejores resultados en la mayor parte de los píxeles. La región del Atlántico tropical norte con lag de 11 meses generó los mejores coeficientes NSE, en el sur, son alrededor de 0.90, mientras que disminuye la eficiencia con el incremento de la latitud.

Figura 5-17. Distribución del NSE con el modelo polinomial (poly) en las regiones del Atlántico.

En la Figura 5-18 se presenta los resultados del modelo exponencial o no lineal. Con la región SST3 se observó un patrón del NSE con la latitud, sin embargo, en el exutorio de la cuenca, en la parte media oeste, se puede ver que el NSE es cercano a cero. En las regiones SST1 y SST2 no se observa, como en los otros modelos una variación espacial definida como gradiente.

Figura 5-18. Distribución del NSE con el modelo no-lineal (nlm) en las regiones del Atlántico..

En la Figura 5-19 se muestra los resultados del modelo regresión paso a paso. En las tres regiones se observó un patrón con la latitud en la región SST1 y SST3, mientras que en la región SST2, solo en la cuenca Bani se observaron valores altos de NSE.

En todos los modelos, excepto el modelo no lineal, se observa un gradiente de NSE en función de la latitud. Los valores de NSE disminuyeron de sur a norte. De los cuatro modelos presentados se pudo demostrar que el modelo polinomial con la región SST3 arrojaron los mejores resultados considerando el NSE. De hecho, considerando los criterios AIC y R² se observó el mismo patrón, la eficiencia de los mejores modelos se presentaron con la región SST del Atlántico tropical norte.

Figura 5-19. Distribución del NSE con el modelo multivariado (paso a paso) en las regiones del Atlántico.

En la Figura 5-20 se presenta la evaluación de los modelos en el punto-píxel (20 meteorológicas). Se observó que el modelo polinomial presenta mejores resultados, seguido del modelo multivariado, el modelo no lineal y finalmente el modelo lineal simple. En todos los casos, ningún modelo pudo predecir la lluvia en el norte de la cuenca Senegal con los criterios de selección establecidos.

Nema -	0.544	0.695	0.717	0.546		
Kiffa -	0.533	0.698	0.695	0.537		
Matam -		0.557	0.58			
Nioro-Du-Sahel -	0.657		0.798	0.665		
Bakel -	0.662		0.758	0.666		
Kayes -	0.707	0.763	0.801	0.707		
Goudiry -	0.722	0.785	0.822	0.722	NS	Е
Segou -	0.631	0.753	0.763	0.634		ī.,
San -	0.653	0.763	0.779	0.666		0.8
Kita -	0.762	0.814	0.84	0.757		07
Bamako-Ville -	0.735	0.805	0.826	0.731		0.7
Kedougou -	0.749	0.818	0.841	0.753		0.6
Bamako-Senou -	0.752	0.789	0.818	0.746		
Siguiri -	0.782	0.804	0.84	0.782		
Sikasso -	0.776	0.818	0.833	0.772		
Labe -	0.838	0.824	0.863	0.838		
Mamou -	0.815	0.752	0.815	0.815		
Odienne -	0.755	0.746	0.777	0.759		
Korhogo -	0.709	0.673	0.709	0.7		
	lm	nls	poly	step		

Figura 5-20. Evaluación de los modelos en los píxeles donde se ubica la estación meteorológica. Donde lm es modelo lineal simple, nls es el modelo exponencial (no lineal), poly es el modelo polinomial y step es el modelo de regresión paso a paso (stepwise regression).

Una vez expuesto que el modelo polinomial reprodujo mejor la lluvia en las cuencas Bani y Senegal, el pronóstico de la lluvia se realizó con este modelo utilizando la SST del Atlántico tropical norte (región SST3). El pronóstico se realizó en cada píxel (0.25° x 0.25°), 725 píxeles conforman el área de las cuencas Bani y Senegal y estaciones aledañas. El rendimiento del modelo es bueno en la mayor parte del área, excepto para el área cerca del desierto, el norte de cuenca Senegal. En la Figura 5-21 se presenta la predicción espaciotemporal de la lluvia entre el 2005 y 2020.

Figura 5-21. Pronóstico de precipitación en las cuencas Bani y Senegal con el modelo polinomial y el predictor SST del Atlántico tropical norte con lag de 11 meses. Muestra del periodo 2005 – 2020.

La precipitación promedio se muestra en la Tabla 5-8 que es el complemento de la Figura 5-21. En el año 1983 no se generó la lluvia debido al lag de 11 meses. En la Figura 5-21 y la Tabla 5-8 se muestra la distribución de la lluvia por mes y año. Se observó que la lluvia generada por el modelo polinomial reproduce la lluvia espacial y temporal.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ασο	Sen	Oct	Nov	Dic	Total anual
1002	S	s	S	S	S	S	s	5	s	s	5	0	s
1905	8	8	8	8	४ २६ १	8 87 /	8 133 6	8 152 0	8 96 7	8 35 /	8	0	526
1985	0	0	0	0	19.0	02. 4 78.2	135.0	1/0.8	92.1	34.6	0	0	/92
1986	0	0	0	0	38.1	106.2	153.8	157 1	90.9	29.3	0	0	576
1987	0	0	0	0	33.5	98.8	159.0	135.2	82.7	36.6	0	0	549
1988	0	0	0	0	37.6	117.0	162.5	174.1	108.6	37.1	0	0	637
1989	0	0	0	0	40.9	101.8	174.6	162.1	107.1	37.9	0	0	624
1990	Õ	0	0	0	57.1	131.2	189.3	158.9	95.5	36.1	0	0	668
1991	0	0	0	0	36.9	126.0	182.5	194.7	117.8	48.4	11 7	0	718
1992	0	0	0	0	37.9	115.8	195.4	182.9	100.9	42.0	10.6	0	686
1993	0	0	0	0	33.8	98.7	170.2	160.2	89.1	30.7	10.2	0	593
1994	0	0	0	0	31.6	85.6	154.1	161.0	93.7	35.5	0.0	0	562
1995	0	0	0	0	37.2	111.6	166.7	167.6	108.4	51.9	13.3	0	657
1996	0	0	0	10.4	54.8	133.8	186.5	170.2	111.9	44.9	0	0	713
1997	0	0	0	0	29.5	91.0	163.9	171.1	111.7	46.6	0	0	614
1998	0	0	0	0	34.2	100.9	171.8	173.1	111.7	45.2	10.9	0	648
1999	0	0	0	0	47.5	118.8	184.1	186.6	125.5	71.4	19.1	0	753
2000	0	0	0	10.5	42.7	129.6	201.4	195.1	122.2	47.8	11.4	0	761
2001	0	0	0	0	45.2	111.8	165.4	171.3	118.1	51.3	11.3	0	674
2002	0	0	0	0	40.2	117.1	198.7	196.2	135.2	52.0	13.0	0	752
2003	0	0	0	0	34.2	92.9	160.8	165.6	110.3	48.4	13.2	0	625
2004	0	0	0	0	54.4	151.5	219.2	203.5	126.5	52.3	14.5	0	822
2005	0	0	0	0	54.7	132.6	207.5	186.1	122.3	54.5	15.3	0	773
2006	0	0	0	0	38.3	122.4	180.3	177.5	114.7	51.0	14.2	0	698
2007	0	0	0	0	43.6	120.9	194.4	182.0	121.7	59.8	14.7	0	737
2008	0	0	0	0	33.7	102.3	152.8	152.6	111.1	50.6	13.6	0	617
2009	0	0	0	0	53.0	129.9	188.5	190.1	116.8	45.5	10.3	0	734
2010	0	0	0	0	48.9	132.1	202.8	190.3	130.2	58.3	14.1	0	777
2011	0	0	0	0	37.6	121.0	184.8	179.4	124.8	57.9	12.1	0	718
2012	0	0	0	0	41.4	107.2	165.6	190.6	126.8	47.1	12.9	0	692
2013	0	0	0	0	48.1	117.6	211.2	198.3	121.3	47.8	11.7	0	756
2014	0	0	0	0	37.8	126.7	182.1	175.7	125.2	53.4	12.5	0	713
2015	0	0	0	0	41.1	126.1	190.6	200.2	134.7	60.2	13.4	0	766
2016	0	0	0	0	52.5	148.2	207.4	211.9	136.1	55.2	15.8	0	827
2017	0	0	0	11.5	52.2	121.8	187.3	183.4	123.7	58.5	16.2	0	755
2018	0	0	0	0	49.6	126.6	193.0	183.1	134.1	68.7	21.9	0	777

Tabla 5-8. Pronóstico de precipitación por mes-año en las cuencas Bani y Senegal.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total anual
2019	0	0	0	10.1	47.6	111.9	178.9	194.1	121.2	48.6	14.2	0	727
2020	0	0	0	0	48.7	125.7	209.3	196.1	121.7	56.7	17.9	0	776
8 - dat	o falta	nto											

§ = dato faltante.

5.3.2. Pronóstico de la temperatura

La temperatura se generó con dos modelos lineales, modelo lineal de regresión simple y el modelo polinomial de grado dos. En la Figura 5-22 (izq.) se observa que el modelo polinomial reprodujo la temperatura con el modelo polinomial, únicamente en el norte del área de estudio. En el extremo sur de las cuencas Bani y Senegal, pocos píxeles fueron modelados con el modelo lineal simple. Estos resultados son satisfactorios con un R²ajs > 0.50 y p-valor < 0.05. Cuando se quita la restricción de los criterios de selección se puede modelar la temperatura para todos los píxeles como se muestra en la Figura 5-22 (der.).

Figura 5-22. Mejores modelos de pronóstico de temperatura en cada píxel dados por la región SST y el modelo. (Izq.) Se considera el R^2 ajs > 0.50, p-valor < 0.05 y AIC menor. (Der.) R^2 ajs < 0.50. SST1, SST2 y SST3 son, respectivamente, las regiones SST del Golfo de Guinea, Atlántico tropical medio y tropical norte.

En la Tabla 5-9 se presenta el rendimiento de los modelos de temperatura. Como se observa en la Figura 5-22, el modelo polinomial genera la temperatura en todos los píxeles del norte

de área de estudio. El R²ajs varía entre 0.621 y 0.873, la eficiencia es mejor en el norte del área de estudio. A contraste con la lluvia, el rendimiento de los modelos disminuye conforme disminuye la latitud.

Estación	región	modelo	R ² ajs	NSE	AIC
Bakel	SST1	poly	0.53	0.48	1347
Bamako-Senou	SST1	poly	0.39	0.27	1320
Bamako-Ville	SST1	poly	0.40	0.30	1320
Goudiry	SST1	poly	0.36	0.32	1392
Kayes	SST1	poly	0.41	0.39	1408
Kedougou	SST1	poly	0.32	0.26	1333
Kiffa	SST1	poly	0.77	0.76	1292
Kita	SST1	poly	0.35	0.21	1408
Korhogo	SST2	poly	0.43	0.32	967
Labe	SST2	poly	0.49	0.45	996
Mamou	SST2	lm	0.61	0.48	934
Matam	SST1	poly	0.72	0.63	1157
Nema	SST1	poly	0.79	0.74	1281
Nioro-Du-Sahel	SST1	poly	0.59	0.56	1388
Odienne	SST2	lm	0.52	0.31	915
San	SST1	poly	0.5	0.36	1294
Segou	SST1	poly	0.52	0.43	1305
Siguiri	SST1	poly	0.34	0.30	1272
Sikasso	SST1	poly	0.36	0.32	1213
Tidjikja	SST1	poly	0.87	0.85	1216

Tabla 5-9. Rendimiento de los modelos de temperatura en los píxeles de las estaciones meteorológicas.

SST1 = SST del Golfo de Guinea, SST2 = SST de la parte media del Atlántico tropical, SST3 = SST del Atlántico tropical norte, poly = modelo polinomial, lm = modelo lineal simple.

El rendimiento de los modelos de temperatura fueron satisfactorios en principalmente en la parte media y norte del área de estudio. Sin embargo, la eficiencia de los modelos disminuyó en las estaciones que se localizan en el sur de las cuencas de estudio. En la Figura 5-23 y Tabla 5-10 se muestra el pronóstico de temperatura con el modelo polinomial.

Es bien conocido que la precipitación en la variable principal en la modelación hidrológica (Bâ et al., 2018a, 2018c). Sin embargo, la temperatura es importante para estimar la evapotranspiración. En el sur del área de estudio, sitio de mayor aportación de

escurrimiento, la temperatura no está siendo modelada correctamente con los modelos lineal simple y polinomial. Si bien el fenómeno no es ajustado por el modelo, al menos, la temperatura de pronóstico reproduce el patrón espacial y temporal de la temperatura observada.

Figura 5-23. Pronóstico de temperatura en las cuencas Bani y Senegal con el modelo polinomial y el predictor SST del norte del Atlántico tropical. Muestra del periodo 2005 - 2020.

La temperatura promedio se muestra en la Tabla 5-10 que es el complemento de la Figura 5-23. La temperatura mínima máxima son, respectivamente, 22.4 °C y 30.8 °C. Los meses más "fríos" (~20 °C) son diciembre y enero, y las temperaturas más cálidas son entre marzo y octubre.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Media anual
1983	§	§	§	§	§	§	§	§	§	§	§	§	§
1984	§	§	§	§	30.2	29.7	29.7	30.3	30.6	30.4	28.3	26.3	29.1
1985	25.8	27.8	29.9	30.7	30.5	29.8	29.9	30.4	30.8	29.6	27.1	25.3	29.0
1986	25.1	27.9	30.1	30.7	30.4	30.1	29.9	30.2	30.7	30.0	27.5	25.1	29.0
1987	26.1	28.4	29.9	30.6	30.5	30.0	30.0	30.4	30.7	29.8	26.8	24.9	29.0
1988	24.3	27.0	29.8	30.7	30.4	29.9	29.8	30.3	30.7	29.7	27.4	24.4	28.7
1989	24.8	27.2	29.8	30.7	30.3	30.0	30.0	30.2	30.7	29.1	26.2	23.7	28.6
1990	25.1	27.5	29.9	30.7	30.5	30.1	30.1	30.3	30.7	29.8	26.4	24.0	28.8
1991	23.5	26.8	29.4	30.6	30.6	30.3	30.2	30.3	30.7	29.8	26.8	23.5	28.5
1992	24.5	27.4	29.7	30.6	30.5	30.2	30.1	30.3	30.7	29.9	27.5	24.5	28.8
1993	25.0	27.9	30.0	30.6	30.5	30.2	30.1	30.4	30.7	30.0	28.0	25.2	29.1
1994	24.9	27.7	29.9	30.7	30.5	30.0	30.0	30.4	30.7	29.8	27.0	24.7	28.9
1995	24.7	27.1	29.3	30.6	30.6	30.4	30.3	30.5	30.6	29.2	26.1	23.8	28.6
1996	24.5	27.0	29.6	30.7	30.5	30.1	29.9	30.3	30.6	30.1	27.8	24.8	28.8
1997	24.5	27.0	29.5	30.7	30.5	30.1	30.1	30.4	30.7	29.9	27.4	24.5	28.8
1998	24.5	27.0	29.6	30.6	30.6	30.3	30.2	30.5	30.7	29.5	26.7	24.0	28.7
1999	23.3	26.4	28.6	30.4	30.7	30.3	30.2	30.4	30.6	29.6	26.2	23.2	28.4
2000	23.5	26.6	29.5	30.6	30.6	30.3	30.3	30.5	30.7	29.6	27.0	24.7	28.7
2001	24.5	26.7	29.3	30.6	30.6	30.3	30.1	30.3	30.7	29.7	26.8	23.3	28.6
2002	23.4	26.0	29.3	30.6	30.6	30.3	30.2	30.4	30.7	29.9	27.7	24.9	28.7
2003	24.8	27.0	29.4	30.6	30.6	30.3	30.3	30.5	30.7	29.2	25.3	22.4	28.4
2004	23.2	26.4	29.3	30.5	30.7	30.5	30.3	30.5	30.7	29.2	26.1	22.9	28.4
2005	23.7	26.5	29.2	30.5	30.6	30.2	30.1	30.5	30.7	29.8	26.5	24.1	28.6
2006	24.1	26.9	29.3	30.5	30.6	30.3	30.1	30.4	30.7	29.6	26.6	23.5	28.6
2007	24.5	26.6	29.0	30.5	30.6	30.4	30.2	30.4	30.7	30.0	27.4	25.3	28.8
2008	25.2	27.0	29.4	30.6	30.6	30.5	30.4	30.5	30.7	29.3	26.2	23.8	28.7
2009	23.7	26.8	29.5	30.6	30.6	30.2	30.1	30.4	30.7	29.4	26.1	23.1	28.4
2010	23.8	26.2	29.1	30.6	30.5	30.2	30.1	30.4	30.7	29.8	26.6	23.9	28.5
2011	24.2	26.4	29.1	30.6	30.6	30.2	30.0	30.3	30.7	29.7	27.2	24.7	28.6
2012	23.5	26.4	29.5	30.6	30.6	30.3	30.2	30.5	30.7	29.5	26.7	22.8	28.5
2013	23.3	26.6	29.5	30.6	30.6	30.2	30.1	30.3	30.7	29.8	26.4	24.0	28.5
2014	24.3	26.4	29.3	30.6	30.6	30.3	30.2	30.4	30.7	29.7	26.4	23.7	28.6
2015	23.3	26.0	29.0	30.6	30.6	30.3	30.1	30.4	30.7	29.3	25.5	22.9	28.2
2016	22.8	26.0	29.2	30.5	30.7	30.5	30.4	30.5	30.6	29.3	26.6	23.8	28.4
2017	24.0	26.5	29.1	30.5	30.7	30.5	30.3	30.6	30.7	29.4	26.4	23.6	28.5

Tabla 5-10. Pronóstico de temperatura por mes-año en las cuencas Bani y Senegal.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Media anual
2018	24.0	26.1	28.7	30.3	30.7	30.5	30.3	30.5	30.6	29.5	27.0	24.2	28.5
2019	23.5	26.6	29.4	30.6	30.7	30.4	30.4	30.5	30.7	29.4	26.4	22.9	28.5
2020	23.4	26.6	29.1	30.4	30.7	30.5	30.5	30.6	30.7	29.6	26.5	22.9	28.5

5.4. Validación de los pronósticos

Los resultados de los rendimientos de los modelos indicaron que el modelo polinomial es el mejor, considerando los criterios AIC, NSE y R². La validación de la precipitación de pronóstico con el modelo polinomial se presenta en la Figura 5-24. Se utilizaron los coeficientes NSE y el R²ajs para medir la bondad de ajuste de las dos series de datos. Además, se midió el error con el MAE y el RMSE. Los mejores resultados se obtuvieron en las estaciones localizadas en la parte media del Sahel y en el sur del área de estudio. El NSE promedio fue 0.712, valor satisfactorio en la modelación. El promedio de R²ajs fue 0.798 y el rango intercuartílico varía entre 0.770 y 0.803. El MAE promedio fue ~30 mm y RMSE fue ~40 mm.

Figura 5-24. Validación de la precipitación de pronóstico: A) Diagrama de caja (boxplot) del R²ajs para los punto-pixeles evaluados, B) distribución de la lluvia de pronóstico medido en el punto-pixel. La explicación del diagrama de caja se muestra en el Anexo C2.

5.5. Desagregación temporal

Los modelos hidrológicos requieren datos de entrada con resolución temporal alta. En el modelo CEQUEAU se pueden utilizar datos diarios o sub-diarios para la modelación hidrológica. Para cumplir con los objetivos planteados, las series de precipitación y temperatura de los pronósticos mensuales se desagregaron en datos diarios. En la Tabla 5-11 se presenta una muestra de la validación de los datos desagregados en 20 píxeles, en la ubicación de las estaciones meteorológicas. El rendimiento se midió con los índices POD, FAR y FBI (Su et al., 2008). Las estaciones localizadas en el sur del área de estudio, por ejemplo: Labe, Mamou, Siguiri y las estaciones localizadas en la parte media: Kedougou, Kita y Segou, tienen un POD mayor a 0.80. Además, el FAR es bajo en las estaciones Labe y Mamou (FAR = ~0.2) y en las estaciones localizadas en la parte media del área de estudio tienen (FAR = ~0.5). Con respecto al índice FBI, las estaciones localizadas en el sur tienen un valor de 1.5, mientras que las estaciones localizadas en el norte tienen un FBI mayor a 2 (Tabla 5-11). En general, el promedio de POD para todos los píxeles es de 0.893, FAR = 0.357, FBI = 1.43, esto indica una buena puntuación, es decir, la lluvia diaria desagregada reproduce muy bien la lluvia diaria (Su et al., 2008).

Estación	POD	FAR	FBI
Bakel	0.914	0.454	1.672
Bamako-Senou	0.937	0.260	1.265
Bamako-Ville	0.945	0.263	1.282
Goudiry	0.917	0.409	1.551
Kayes	0.921	0.352	1.420
Kedougou	0.946	0.295	1.342
Kiffa	0.856	0.541	1.864
Kita	0.939	0.256	1.262
Korhogo	0.936	0.396	1.549
Labe	0.968	0.222	1.244
Mamou	0.967	0.254	1.297
Matam	0.864	0.565	1.984
Nema	0.875	0.482	1.690
Nioro-Du-Sahel	0.916	0.381	1.479
Odienne	0.937	0.306	1.350
San	0.931	0.300	1.330

Tabla 5-11. Validación de la precipitación diaria de pronóstico en el punto-pixel de 20 estaciones.

Resultados

Estación	POD	FAR	FBI
Segou	0.931	0.315	1.358
Siguiri	0.951	0.300	1.359
Sikasso	0.929	0.271	1.274
Tidjikja	0.679	0.446	1.225

El modelo de desagregación requiere de un indicador a la misma resolución temporal a la que se desea desagregar los datos. Debido a que en el área de estudio (cuencas Bani y Senegal) no existen datos observados diarios-continuos para todos los píxeles, se utilizaron los datos diarios PERSIANN-CDR. Con el modelo de Chow and Lin (1971) desagregó la lluvia mensual en datos diarios. La evaluación de la lluvia fue muy buena medida con los índices POD, FAR y FBI. Además, se tiene la lluvia desagregada para todos los píxeles y en toda la serie temporal. Con estos datos se pueden modelar los caudales diarios de las cuencas de los ríos Bani (alto Niger) y Senegal, en la misma resolución espacial.

La temperatura se validó a nivel diario relacionando uno a uno el valor observado en el periodo 2015-2020. En las estaciones Kiffa, Nema y Tidjikja, localizadas en el norte de la cuenca Senegal, los coeficientes de determinación fueron mayores a 0.80. En la parte media de la cuenca Senegal, las estaciones Nioro Du Sahel y Matam, tuvieron coeficientes mayores a 0.63. Sin embargo, en las estaciones localizadas en el sur, los coeficientes fueron

bajos, por ejemplo Labe ($R^2 = 0.38$) y Mamou ($R^2 = 0.41$). En el sur de la cuenca Bani también se obtuvieron correlaciones bajas, por ejemplo, Korhogo ($R^2 = 0.33$) y Odienne ($R^2 = 0.51$).

Figura 5-27. Validación de la temperatura diaria de pronóstico en el punto-píxel. La linea roja es la curva de ajuste del modelo lineal y la linea azul es la relación uno a uno de la temperatura ERA5 (observada) y la temperatura de pronosticada con el modelo lineal, periodo 2015-2020.

5.6. Pronóstico de escurrimientos

En el modelo CEQUEAU se utilizaron los pronósticos de precipitación y temperatura para modelar los escurrimientos diarios de los ríos Bani en Beneny Kegny, Faleme en Kidira, Bafing en Bafing Makana y Bakoye en Oualia. Los caudales de estos ríos también fueron modeladas por Bâ et al. (2018a) and Bâ et al. (2018b). En estos estudios, los autores utilizaron datos diarios de satélite, precipitación de los productos PERSIANN-CDR y TRMM y temperatura ERA-Interim, para modelar los escurrimientos diarios. Los parámetros de los modelos de Bâ et al. (2018a) se utilizaron en este estudio como parámetros definitivos del modelo, es decir, estos no se recalibraron con los datos de precipitación y temperatura de pronóstico y se realiza el pronóstico a nivel diario.

La eficiencia de las modelaciones por año, sin recalibrar el modelo, en el periodo 1985-2016 se presentan en la Tabla 5-12. Los datos meteorológicos de pronóstico comprende entre 1985 y 2020, sin embargo, los caudales observados están disponibles hasta el 2016. En 32 años de evaluación se obtuvieron resultados satisfactorios de acuerdo con la clasificación de los criterios de Moriasi et al. (2015). Por ejemplo, en Beneny Kegny el 77% de los NSE fueron positivos, de los cuales el 71% son mayores a 0.5, y el NSE máximo fue 0.878. En Kidira, el 91% fueron NSE positivos, de los cuales el 55% fueron mayores a 0.5, y el valor máximo fue NSE = 0.759. En Bafing Makana, el 97% de los resultados fueron positivos, de los cuales el 42% fueron mayores a 0.5 y el NSE máximo fue 0.699. En Oualia, el 78% de los NSE fueron positivos, de los cuales el 64% fueron mayores a 0.5 v el NSE máximo fue 0.764. El NSE más bajo fue -3.692 para la cuenca Bakoye en el año 1987. Considerando el R², el valor más alto se registró en la cuenca Bani $(R^2 = 0.964)$, seguido de Faleme $(R^2 = 0.861)$, Bakove $(R^2 = 79.3)$ y Bafing $(R^2 = 0.774)$, en promedio, el R² fue 0.848. El MAE mínimo registrado fue en la estación Bani (MAE = 15.1), seguido de Bakove (MAE = 20.9), Faleme (MAE = 36.5) y finalmente por Bafing (MAE = 101.4).

Tabla 5-12. 1	Rendimiento	del modelo de j	pronóstico d	e escurrim	ientos diar	rios con los	parámetros	de Bâ e	et al
(2018) en lo	os ríos Bani e	n Beneny Kegn	y, Faleme ei	n Kidira, B	afing en B	afing Maka	na, Bakoye e	en Oua	lia.

Cnc		Niger		Senegal								
Río		Bani			Faleme		Bafing			Bakoye		
Est	Ben	neny Ke	egny	Kidira			Bafing Makana			Oualia		
Año	NSE	\mathbf{R}^2	MAE	NSE	\mathbf{R}^2	MAE	NSE	\mathbf{R}^2	MAE	NSE	\mathbf{R}^2	MAE
1985	0.731	0.869	56.7	0.708	0.717	36.5	0.648	0.746	101.4	0.710	0.791	20.9
1986	-0.461	0.739	126.8	0.266	0.393	60.4	0.236	0.518	154.8	-0.538	0.538	42.7
1987	-2.076	0.66	125.6	-0.910	0.344	47.9	0.205	0.528	142.9	-3.692	0.473	42.9
1988	0.832	0.873	79.9	0.614	0.631	61.0	0.485	0.641	152.2	0.576	0.673	69.9
1989	0.484	0.748	112.0	0.643	0.662	62.6	0.262	0.624	159.9	0.329	0.507	48.6
1990	-0.203	0.900	160.8	-0.136	0.645	59.5	0.245	0.666	158.8	-0.721	0.748	50.8
1991	0.215	0.890	153.3	0.456	0.594	65.7	0.447	0.610	164.6	0.322	0.746	44.6
1992	-1.191	0.724	191.2	-1.850	0.471	79.4	0.204	0.625	169.3	-0.254	0.652	48.1
1993	0.027	0.766	105.8	0.197	0.437	56.0	-0.062	0.602	167.8	0.349	0.719	32.9
1994	0.553	0.760	230.3	0.559	0.695	70.8	0.595	0.608	165.2	0.449	0.713	83.8
1995	0.701	0.798	89.9	0.608	0.686	67.8	0.508	0.562	171.4	0.591	0.769	71.0
1996	0.033	0.803	166.2	0.625	0.687	60.6	0.327	0.581	171.6	0.533	0.606	56.1
1997	0.783	0.903	82.3	0.704	0.784	49.8	0.669	0.762	127.0	0.675	0.676	38.2
1998	0.755	0.835	135.2	0.430	0.492	114.2	0.610	0.662	155.9	0.583	0.606	37.1
1999	0.747	0.866	187.9	0.502	0.569	98.5	0.452	0.592	163.1	0.525	0.577	78.0
2000	0.232	0.964	15.1	0.718	0.794	47.2	0.256	0.576	169.6	0.426	0.712	46.3
2001	0.878	0.906	72.7	0.759	0.790	42.5	0.587	0.651	184.9	0.716	0.735	36.6
2002	-1.878	0.884	205.0	0.349	0.687	62.8	0.552	0.689	161.7	0.070	0.710	55.1
2003	0.700	0.868	165.7	0.584	0.861	64.7	0.635	0.714	182.1	0.484	0.789	77.6
2004	§	§	§	0.585	0.689	64.2	0.083	0.629	174.6	-0.710	0.672	73.6
2005	-0.816	0.934	219.4	0.488	0.505	84.9	0.465	0.623	185.2	0.697	0.704	45.8
2006	0.383	0.666	144.1	0.049	0.530	60.0	0.075	0.635	167.7	-0.250	0.589	48.2
2007	0.783	0.807	160.1	0.592	0.620	66.9	0.427	0.524	196.7	0.589	0.611	59.6
2008	0.864	0.887	84.8	0.569	0.729	55.4	0.699	0.774	131.1	0.619	0.790	49.3
2009	0.570	0.638	149.2	0.422	0.452	106.6	0.336	0.428	209.3	0.430	0.430	78.2
2010	0.660	0.662	255.3	0.397	0.470	122.1	0.355	0.378	221.6	0.458	0.468	77.2
2011	-0.491	0.660	191.2	0.382	0.431	89.0	0.582	0.686	157.4	0.518	0.538	53.3
2012	0.669	0.861	208.6	0.408	0.679	103.1	0.637	0.665	152.3	0.513	0.751	80.9
2013	0.321	0.696	157.9	0.452	0.585	132.3	0.415	0.504	207.8	0.518	0.557	92.7
2014	0.722	0.805	103.7	0.610	0.633	55.2	0.356	0.512	188.8	-0.600	0.562	52.1
2015	0.680	0.725	147.1	0.396	0.625	137.5	0.551	0.597	172.7	0.691	0.710	50.1
2016	0.861	0.911	153.6	0.618	0.839	99.9	0.526	0.641	166.2	0.764	0.793	60.5

Cnc = cuenca, Est = estación hidrométrica, § = dato faltante. Los números en azul indican los valores más altos de NSE y R^2 , en rojo indican los valores más bajos. En verde se indica el valor más bajo de MAE y en gris el valor más alto.

En las Figuras 5-28 5-29 5-30 5-31 se presentan los hidrogramas para 2 años (1997-1998) la cuatro cuencas modeladas con los pronósticos de precipitación y temperatura. En Beneny Kegny el NSE fue 0.769 y el PBIAS -0.8. El caudal pronosticado fue inferior en los picos máximo, sin embargo, el modelo calcula muy bien el periodo del WAM. En Kidira el NSE fue 0.589 y PBIAS -12.6. En Bafing Makana el NSE fue 0.634 y PBIAS 35.2, los caudales pico se ajustaron mejor. En Oualia el NSE fue 0.648 y PBIAS 2.3. Los picos de algunos días se modelan cuando son menores a 300 m³ s⁻¹.

Figura 5-28. Escurrimientos del río Bani en la estación Beneny Kegny. (A) hietograma con PERSIANN-CDR y pronóstico de lluvia diaria. (B) caudales simulados con el producto PERSIANN-CDR y escurrimientos de pronóstico. Q = caudal, observado en la estación hidrométrica y simulado, tss = son los resultados obtenidos en este estudio (tesis), Bâ = son los resultados reportados en Bâ et al. (2018).

Resultados

Figura 5-29. Escurrimientos del río Faleme en la estación Kidira. (A) hietograma con PERSIANN-CDR y pronóstico de lluvia diaria. (B) caudales simulados con el producto PERSIANN-CDR y escurrimientos de pronóstico. Q = caudal, observado en la estación hidrométrica y simulado, tss = son los resultados obtenidos en este estudio (tesis), Bâ = son los resultados reportados en Bâ et al. (2018).

Figura 5-30. Escurrimientos del río Bafing en Bafing Makana: (A) hietograma con PERSIANN-CDR y pronóstico de lluvia diaria. (B) caudales simulados con el producto PERSIANN-CDR y escurrimientos de pronóstico. Q = caudal, observado en la estación hidrométrica y simulado, tss = son los resultados obtenidos en este estudio (tesis), Bâ = son los resultados reportados en Bâ et al. (2018).
Resultados

Figura 5-31. Escurrimientos del río Bakoye en Oualia: (A) hietograma con PERSIANN-CDR y pronóstico de lluvia diaria. (B) caudales simulados con el producto PERSIANN-CDR y escurrimientos de pronóstico. Q = caudal, observado en la estación hidrométrica y simulado, tss = son los resultados obtenidos en este estudio (tesis), Bâ = son los resultados reportados en Bâ et al. (2018).

En la Tabla 5-13 se presentan los caudales medios y las láminas interanuales en el periodo 1985-2016. El error entre las láminas (caudales) calculadas y observadas interanuales varía entre 2.7% y 48%. La precipitación media de los años 1997-1998 (correspondientes con la Figura 5-28-Figura 5-31) tuvo un error entre 5% y 11%. En los caudales medios de julio-agosto-septiembre para cada año se muestran en Anexo B4-Anexo B7. En los análisis por año, los errores son altos a diferencia de los errores interanuales. En las estaciones Oualia y Kidira, los caudales calculados subestiman en más del 60% de los años. En las estaciones Beneny Kegny y Bafing Makana (mayor escurrimiento), los caudales simulados sobrestiman los observados en la mayor parte del periodo. Sin embargo, no sobrestiman los picos, como se puede ver en los hidrogramas (Figura 5-28 a Figura 5-31), sino que existe un desfase a inicios del WAM, es decir los picos de agosto se adelantan a junio y julio. Este puede deberse a distintas circunstancias, por ejemplo, la desagregación diaria de la lluvia no calcula correctamente la dimensión de los picos, la temperatura no calcula efectivamente la evapotranspiración o la sensibilidad del modelo hidrológico a los cambios de variables

climáticas. Para descartar esto se puede calibrar el modelo con un producto de lluvia y validar con otros productos con la misma resolución espaciotemporal.

Tabla 5-13. Error sobre los caudales medios y las láminas interanuales, en el periodo 1985-2016 y error enlas lluvias de los años 1997-1998.

Río	Bani		Faleme		Bafing			Bakoye				
Estación	Beneny Kegni		Kidira		Bafing Makana			Oualia				
	Obs	Cal	ER	Obs	Cal	ER	Obs	Cal	ER	Obs	Cal	ER
Caudales medios*	246.6	315.0	27.7	108.1	111.1	2.7	232.7	344.9	48.2	81.7	90.6	10.8
Lámina interanual*	69.4	88.7	27.7	117.6	120.8	2.7	340.7	505.0	48.2	25.1	27.9	10.8
Precipitación [#]	2162	1959	-9.4	2271	2048	-9.8	3113	2770	-11.0	1563	1484	-5.1

Obs = caudal observado, Cal = caudal calculado, ER = error relativo, *periodo 1985-2016, [#]periodo 1997-1998

Capítulo 6: Discusión de resultados

6.1. Distribución de la lluvia en la región

En el Sahel, la lluvia tiene un gradiente negativo con relación a la latitud. En el sur, la precipitación es aproximadamente 2800 mm año⁻¹, mientras que en el norte es alrededor de 100 mm año⁻¹ (Bâ et al., 2018a). La humedad de África occidental es ocasionada en su totalidad por el WAM. Los meses húmedos son entre mayo y octubre (Biasutti, 2019; Folland et al., 1991) y las lluvias más fuertes ocurren con frecuencia entre julio-agosto-septiembre (Bâ et al., 2018a; Thorncroft and Lamb, 2005).

Estudios previos en el Sahel reportan varias hipótesis para describir la sequía de las últimas décadas (Gado Djibo et al., 2015b; Janicot et al., 2001; Nicholson et al., 1998), entre las cuales, a continuación se citan las más significativas. La sequía se asocia con las oscilaciones de los océanos que duran décadas (Thorncroft and Lamb, 2005). El enfriamiento de la SST en el Atlántico tropical norte y el calentamiento repentino en el sur, conduce la migración de la ZCIT más hacia el sur, provocando menor humedad en la región (Foltz et al., 2019; Gado Djibo et al., 2015a; Vischel et al., 2019). Además, los eventos El Niño y La Niña influyen en los patrones de la lluvia de las áreas tropicales (Janicot et al., 2001). Por otro lado, los cambios en los patrones de lluvia son asociados con la circulación

general de la atmósfera. Por ejemplo, actualmente el Pacífico se encuentra en una fase fría y el Atlántico en una fase cálida, debido a la circulación de Walker. La circulación atmosférica de Walker es una circulación de aire y vapor de agua tropical que se mueve de este a oeste gracias a las diferencias de presión y temperatura de los océanos Pacífico y Atlántico. En años recientes, el Pacífico se ha enfriado rápidamente, por el contrario, el Atlántico se ha calentado mucho más rápido de lo normal. La diferencia alta de temperatura acelera la circulación y el transporte de vapor del Atlántico hacia la cuenca del Amazonas, esto indicaría la disminución de la precipitación en África (Barichivich et al., 2018).

6.2. Validación de los datos de entrada

Los productos de satélite y reanálisis se validaron con observaciones *in-situ*. Los datos de los productos de precipitación y temperatura, respectivamente, PERSIANN-CDR (Ashouri et al., 2016) y Ta2m-ERA5 (Hersbach et al., 2020) se compararon con los datos de estaciones meteorológicas en el punto-pixel y se calculó el coeficiente de determinación. Los resultados obtenidos son congruentes con los reportados en previos sobre la misma región (Bâ et al., 2018a, 2018c, 2018b). Es importante resaltar que los datos SST se validaron con observaciones de las boyas del Atlántico en el punto-píxel.

Los resultados de la validación en el punto-pixel indican que el producto PERSIANN-CDR reproduce muy bien la lluvia observada, principalmente en las estaciones localizadas en lugares húmedos del sur del área de estudio ($0.71 \le R^2 \le 0.92$). Se observó que la eficiencia de PERSIANN-CDR disminuye en las estaciones localizadas en el norte, cerca del desierto del Sahara. La disminución de la bondad de ajuste en las estaciones localizadas cerca del desierto se debe a distintas circunstancias, entre ellas, la ubicación de la estación en el pixel no es representativa para el área o los sensores de lluvia no estiman de manera eficiente en lugares muy áridos (Bâ et al., 2018a; Valdés-Pineda et al., 2016). Los datos diarios PERSIANN-CDR tienen datos faltantes hasta 7 días por año entre 1984 y 1987, y en los años 1983, 1988, 1990-1993, 1995-1996, 1999, 2011-2012 tienen menos de 5 días. Debido

a que no existen datos en toda el área, y los datos de las estaciones meteorológicas son insuficientes, se rellenaron con el promedio histórico del producto PERSIANN-CDR diario. Febrero es el mes con más datos faltantes, por lo tanto, los valores ausentes se rellenan con ceros, debido a que son periodos sin precipitación.

El producto de temperatura Ta2m-ERA5 se validó con los datos disponibles de 7 estaciones meteorológicas. La correlación es alta en las estaciones localizadas en el norte, sin embargo, presentan un sesgo de 20% a 30% el cual puede tener origen en la ubicación de la estación respecto al área del pixel. En el estudio de Bâ et al. (2018a) utilizaron los datos de temperatura ERA-Interim (versión anterior a ERA5). Encontraron un buen ajuste entre ERA-Interim y la temperatura observada. Además, reportaron que el producto ERA-Interim reproduce mejor la temperatura en los píxeles de las estaciones del norte, por ejemplo Tidjikja y Bakel. En estas estaciones, la diferencia de altitud en un cuadro de 0.25° x 0.25° es menor, es decir, la temperatura Ta2m-ERA5 reproduce mejor el fenómeno en los píxeles con topografía homogénea. Estudios en otras regiones reportan correlaciones altas entre la temperatura del producto ERA-Interim con datos observados y otros productos. Por ejemplo Mooney et al. (2011) en Irlanda compararon con datos observados de satélite (Dee et al., 2011; Mooney et al., 2011).

El producto SST ERA5 se validó con los datos observados de las boyas localizadas cerca del continente (Bourlès et al., 2019). En las cinco estaciones se observó que la relación con los datos observados es casi perfecta. Los coeficientes de determinación fueron mayor a 0.93 y el PBIAS es menor a 2%, es decir, el producto reproduce muy bien el fenómeno observado.

6.3. Discretización del Atlántico y teleconexiones

En el presente trabajo, se regionalizaron los predictores SST, RHUM y MSLP, utilizando técnicas ACP y análisis clúster. La división del Atlántico permitió encontrar las regiones

que tienen mejor teleconexión con las variables climáticas. Luego se identificó el lag óptimo entre los predictores con la precipitación y temperatura por correlación cruzada. Se observó que la mejor teleconexión entre las variables océano-atmosféricas con la lluvia/temperatura es con las regiones del Atlántico tropical norte y con el extremo sur del Golfo de Guinea. Además, se utilizaron los índices Niño del Pacífico central los cuales tienen un grado de asociación con las lluvias del WAM (Janicot et al., 2001; Nicholson, 2000). Las covariables del Atlántico y del Pacífico se utilizaron en un modelo de regresión lineal múltiple paso a paso (*stepwise regression*).

Estudios recientes utilizan distintas técnicas para reducir la dimensión espacio-temporal de las variables. Por ejemplo, Sittichok et al. (2016) utilizaron métodos ACP, correlación canónica y métodos de regresiones graduales entre la SST del Atlántico y Pacífico para reducir el número de componentes y seleccionar el lag óptimo. Folland et al. (1991) agruparon la SST de 2.5° x 2.5° en celdas de 10° x 10° para reducir el número de componentes. En los estudios de Gado Djibo et al. (2015a) y Gado Djibo et al. (2015b) utilizaron el método propuesto por Sittichok (2015) y Sittichok et al. (2016) para estimar el lag óptimo. Además, utilizaron algoritmos bayesianos para detectar puntos de cambio con el propósito de describir modelos con parámetros cambiantes.

6.4. Pronóstico de lluvia y temperatura

Las modelaciones de la lluvia con el modelo polinomial y la SST del Atlántico tropical norte arrojaron los mejores resultados. El NSE varía entre 0.69 y 0.90 con y lag 11 meses. Con la SST del Golfo de Guinea y lag de 5 meses, el NSE varía entre 0.63 y 0.67. En el sur de las cuencas, el modelo paso a paso también dio resultados satisfactorios con la SST del Atlántico tropical norte, por ejemplo en las estaciones Labe, Mamou, Odienne y Korhogo, el NSE es, respectivamente, 0.85, 0.83, 0.84, 0.80. Sin embargo, en el norte de la cuenca Senegal (zona desértica) ninguno de los 4 modelos fue capaz de reproducir la lluvia con los

criterios de selección (R^2 ajs > 0.5, p-valor < 0.05). Para tener un modelo por cada pixel, se suprimió la restricción de los criterios y se seleccionaron los modelos con AIC menor.

En las modelaciones de temperatura, unicamente el modelo polinomial fue capaz de reproducir el fenómeno con los criterios de selección $R^2ajs > 0.5$, p-valor < 0.05. Los modelos polinomiales reproducen mejor la temperatura en la parte norte del área de estudio y unos pocos píxeles en el sur. Para modelar la temperatura en toda la cuenca del río Senegal, se eliminó la restricción de los criterios y se seleccionaron los modelos con AIC menor.

Los resultados de esta investigación muestran que la SST del norte del Atlántico tropical y la SST del Golfo de Guinea tienen teleconexión fuerte con la lluvia del Sahel. El NSE promedio fue 0.80 y el máximo NSE fue 0.90. El MAE fue ~30 mm mes⁻¹, siendo el modelo polinomial el de menor error. En un estudio previo, Gado Djibo et al. (2015b) obtuvieron resultados satisfactorios con el método bayesiano de cambio múltiple de punto y Ta2m (NSE = 0.76, lag = 14 meses). Con otros predictores como la SLP y RHUM obtuvieron resultados poco satisfactorios (Tabla 6-1). En otro estudio, Gado Djibo et al. (2015a) combinando modelos lineales reportaron los siguientes resultados, con la Ta2m (NSE = 0.53, lag 7 meses), con la SST (NSE = 0.34, lag = 12 meses), RHUM (NSE = 0.52, lag = 8 meses) y viento meridional con lag = 8 meses. Con los modelos no-lineales Gado Djibo et al. (2015a) obtuvieron el rendimiento más alto con la Ta2m (NSE = 0.45, lag = 8 meses). Gado Djibo et al. (2015a) obtuvieron resultados satisfactorios en el pronóstico de lluvia con un modelo lineal y poco satisfactorios con modelos no lineales. Cabe subrayar, que no siempre un modelo no lineal puede ser mejor que un modelo lineal (Gado Djibo et al., 2015b). Los resultados obtenidos con el modelo polinomial son mejores en un 26% y 42% que los reportados en estudios previos (Gado Djibo et al., 2015b, 2015a) y 46% mejor que el modelo de Sittichok (2015) (Tabla 6-1).

Las regiones con mayor influencia sobre la lluvia del Sahel, se encuentran al sur y al norte de la ZCIT (Gado Djibo et al., 2015a; Vischel et al., 2019). La región SST del Atlántico con

bajas predicciones coincide con la región de la ZCIT cuando se encuentra más hacia el sur, área en donde se producen algunos fenómenos que pueden estar alterando la temperatura de la superficie del mar. La SST del Golfo de Guinea tiene buena teleconexión y arroja correlaciones fuertes, sin embargo, los desfases son cortos para el objetivo planteado en este estudio, lag > seis meses (Foltz et al., 2019; Lebel et al., 2009; Vischel et al., 2019).

Autor	Datos/ubicación	Fuente y Características	Modelos (pronóstico de lluvia)	Lag	Eficiencia
En este estudio	SST Atlántico, ACP- clúster/Cuenca Bani	ECMWF/ Copernicus	Polinomial	11-meses	SST: NSE = 0.90
En este estudio	SST Atlántico, ACP- clúster/Cuenca Senegal	ECMWF/ Copernicus	Polinomial	11-meses	SST: NSE = 0.86
Sittichok et al. (2015)	SST Atlántico, Pacífico (2° x 2°), combinación de regresión, ACP y ACC/cuenca Sirba	International Research Institute for Climate and Society.	Lineal	12-meses	SST Atlántico NSE = 0.23 SST Pacífico NSE = 0.38
Sittichok et al. (2016)	SST/ (2° x 2°)	National Water Service (NWS)/NOAA	Regresión paso a paso, regresión lineal	12-meses	SST: NSE = 0.39
Gado Djibo, et al. (2015a)	SLP, RHUM, Ta, viento zonal y viento meridional/ cuenca Sirba	NCEP- DOE Reanalysis (NOAA: http://www.esrl.noaa.gov), 2.5°	Lineal	SLP: 0 RHUM: 8-meses Ta: 7-meses VWIND: 8-meses UWIND: 7-meses SST: 12-meses	SLP: NSE = 0.46 RHUM: NSE = 0.52 Ta: NSE = 0.53 VWIND: NSE = 0.28 UWIND: NSE = 0.32 SST: NSE = 0.34
		Λ 2.5 .	No-lineal	SLP: 9-meses RHUM: 7-meses Ta: 8-meses	SLP: NSE = 0.31 RHUM: NSE = 0.36 Ta: NSE = 0.45
Gado Djibo, et al. (2015b)	Ta, SLP, RHUM	Climatic Research Unit	Lineal	Ta: 14-meses SLP: 0 RHUM: 8-meses	Ta: NSE = 0.76 SLP: NSE = 46 RHUM: NSE =0.52
Garric et al (2002)	SST del golfo de Guinea	CRU, NCEP/NCAR, ECMWF)	Lineal, regresión paso a paso	12-meses	SST: r = 0.67
Folland, et al (1991)	SST	Meteorological Office	Regresión lineal paso a	1-mes	SST: r = 0.54

Tabla 6-1. Comparación de resultados de los modelos de precipitación con otro	s estudios.
---	-------------

Autor	Datos/ubicación	Fuente y Características	Modelos (pronóstico de lluvia)	Lag	Eficiencia
		Historical Sea Surface Temperature data set version 3 (MOHSST3)	paso Regresión lineal paso a paso discriminante		SST: r = 0.72

* = valor más alto; § = no se reporta el resultado en el artículo o no existe.

6.5. Desagregación de series mensuales en diarias

Los modelos hidrológicos generalmente requieren datos de alta frecuencia, diarios o subdiarios. Resulta evidente que para una modelación de los escurrimientos diarios se requieren datos climatológicos en la misma temporalidad. En consecuencia, los pronósticos mensuales de precipitación y de temperatura se desagregaron en frecuencia diaria con el método de chow-lin (Chow and Lin, 1971) utilizando la librería {*tempdisagg*} del lenguaje de programación R (Sax and Steiner, 2013). El método utilizado tiene un buen rendimiento en el punto pixel, donde la probabilidad de detección es entre 0.68 y 0.97, la falsa alarma es bajo, entre 0.2 y 0.4 y el índice de frecuencia bias es menor a 1.9. El rendimiento del modelo de desagregación de precipitación fue muy bueno de acuerdo con las métricas de bondad de ajuste (Su et al., 2008). Por otro lado, la temperatura desagregada con el método de chow-lin también tiene buenos resultados en las estaciones localizadas en el norte de la cuenca Senegal (R² > 0.5). Estos datos se utilizaron en el modelo CEQUEAU para modelar los escurrimientos de pronóstico diarios de las cuencas de los ríos Bani (alto Niger) y tres afluentes del río Senegal.

También cabe citar los estudios efectuados por Sittichok, (2015) y Sittichok et al. (2018) quienes utilizaron tres métodos basados en la propuesta de Harms and Campbell (1967) para desagregar las lluvias mensuales en diarias. Estos autores utilizaron datos históricos diarios para desagregar los datos de pronósticos mensuales. Los datos desagregados los acumulan a nivel mensual y los comparan con la lluvia observada. Con la mejor estimación obtuvieron un R² de 0.804 (Sittichok et al., 2016). Posteriormente, estas lluvias las utilizaron en el modelo SWAT y modelaron los escurrimientos en la cuenca Sirba, en el río Niger (Sittichok et al., 2018).

6.6. Pronóstico de escurrimientos

En la región del Sahel pocos estudios de pronóstico de escurrimiento han sido realizados. En la Tabla 6-2 se contrastan los resultados de este estudio con los realizados por (Sittichok, 2015; Sittichok et al., 2018). Los resultados del presente trabajo con respecto a la modelación de los escurrimientos en los ríos Bani y Senegal fueron satisfactorios de acuerdo con la clasificación de los criterios de (Moriasi et al., 2015). En la cuenca Bani, el NSE promedio fue 0.730 y en la cuenca Senegal 0.694 (Tabla 6-2). Estudios previos en la región reportan resultados poco satisfactorios. Por ejemplo, Sittichok et al. (2016) utilizaron la precipitación de pronóstico en el modelo SWAT para modelar los escurrimientos de la cuenca Sirba (río Niger). Los resultados de las modelaciones del estudio en mención fueron poco satisfactorias de acuerdo con la clasificación de Moriasi et al. (2015). El NSE es de 0.487 con lag de 12 meses, y no se reporta la eficiencia para cada año. En un estudio posterior sobre la misma región en estudio, Sittichok et al. (2018) obtuvieron mejores resultados, el NSE fue de 0.70 con lag de 6 meses.

Autor	Datos/ubicación	Fuente y Características	Modelos (pronóstico de lluvia)	Modelos (pronóstico de escurrimientos)	Lag (meses)	Frecuencia	Eficiencia
En este estudio	SST Atlántico/Cuenca Bani	European Centre for Medium-Range Weather Forecasts (ECMWF)	Polinomial	CEQUEAU	11	Diario	NSE = 0.730
En este estudio	SST Atlántico/Cuenca Senegal	European Centre for Medium-Range Weather Forecasts (ECMWF)	Polinomial	CEQUEAU	11	Dario	NSE = 0.694
Sittichok et al. (2016)	SST Atlántico, Pacífico/cuenca Sirba	International Research Institute for Climate and Society.	Lineal, combinación de Regresión, ACP y ACC	SWAT	12	mensual	NSE = 0.487
Sittichok et al. (2018)	SST Atlántico, Pacífico/cuenca Sirba	International Research Institute for Climate and Society.	Lineal, combinación de Regresión, ACP y ACC	SWAT	6	mensual	NSE = 0.70

Tabla 6-2. Comparación de los resultados de modelos de escurrimientos de este estudio con estudios previos.

6.7. Contribución científica y social

Sin duda un pronóstico eficaz de la lluvia es de gran importancia para millones de personas del Sahel, donde la mayoría se dedica a la agricultura de subsistencia. En efecto, el pronóstico efectivo del WAM puede ser una herramienta eficaz para implementar medidas preventivas y aumentar la resiliencia de la población ante la presencia de periodo con baja disponibilidad hídrica o bien eventos de inundación con impactos devastadores. Además, con la información pertinente, los gobiernos de la región pueden llegar a solicitar anticipadamente la ayuda humanitaria de organismos internacionales. Sin embargo, los pronósticos de los caudales tienen otros objetivos, por ejemplo: la regulación de los caudales y el mantenimiento de represas para el abastecimiento, la producción de energía, la navegación y la recreación.

Los modelos utilizados en este estudio se pueden implementar en el Sahel para contrastar y complementar los pronósticos realizados por el foro anual de PRESASS. Es importante destacar, que los modelos obtenidos en el presente estudio son simples y se pueden retroalimentar con otras variables para mejorar la eficiencia de los mismos. Por otro lado, el auge de la tecnología también puede ayudar a mejorar los modelos planteados, utilizando técnicas para optimizar el tiempo de procesamiento, por ejemplo los cubos espacio-temporales (para el procesamiento eficiente de datos multidimensionales), además, la implementación de modelos autorregresivos y otros modelos no lineales.

Por otro lado, el modelo hidrológico CEQUEAU requiere de pocos datos meteorológicos en la modelación de escurrimientos. Además, en este modelo se pueden utilizar los datos de satélite de lluvia y temperatura en la misma escala de la discretización de las cuencas. En este estudio, se discretizaron las cuencas con píxeles de 0.25° x 0.25°, pero se pueden utilizar otras dimensiones dependiendo del área de la cuenca. Estos recursos pueden llegar a ser una herramienta eficaz para la toma de decisiones en el Sahel.

Capítulo 7: Conclusiones y recomendaciones

La alta variabilidad del clima del Sahel ocasiona sequías e inundaciones que afectan cada año a millones de personas, bien sea por la escasez o abundancia del recurso hídrico. Las sequías persistentes como las ocurridas en los años setenta y ochenta agravaron la crisis humanitaria de la región. En los años siguientes, la comunidad científica internacional puso mayor atención en el Sahel para encontrar las causas y desarrollar modelos para prever las lluvias de la región. Después de la gran sequía se creó el foro PRESASS, actualmente PRESAO, para realizar el pronóstico estacional. Todos los años en los meses de abril o mayo se reúnen expertos en la materia para llegar a un consenso del pronóstico del WAM. Sin embargo, eventos repentinos sorprenden a las autoridades de los países de la región. En décadas recientes, muchos estudios se han enfocado en mejorar las habilidades de los modelos de pronóstico de lluvia (Gado Djibo et al., 2015b; Rodríguez-Fonseca et al., 2015; Sittichok et al., 2016). Sin duda alguna, las herramientas de pronóstico son un aporte importante para que los gobiernos puedan tomar acciones preventivas, o bien para la mitigación de impactos. En efecto, con una herramienta de pronóstico eficiente, los tomadores de decisiones pueden minimizar los daños y maximizar la resiliencia de la población ante dichos fenómenos hidroclimáticos.

Los modelos estadísticos y el modelo hidrológico utilizados en este estudio son de fácil aplicación y los datos de satélite son accesibles para los usuarios. Esto permite reducir la brecha entre la ciencia y el usuario final. Este estudio pretende constituirse en un aporte significativo en la mejora de la eficacia de los pronósticos con una antelación mayor a 6 meses, tiempo suficiente para la toma de decisiones en la región del Sahel occidental.

Los objetivos planteados en el estudio se cumplieron en su totalidad. Se procesaron los datos de satélite y se validaron con observaciones *in-situ*. Los datos de productos de satélite se validaron con datos observados en la ubicación del punto-pixel. PERSIANN-CDR se validó con los datos de 20 pluviómetros, Ta2m-ERA5 con los datos de 7 estaciones meteorológicas y SST ERA5 con los datos observados de 5 boyas del Atlántico tropical. La eficiencia de estos productos se midió con el coeficiente de determinación. Las correlaciones entre los datos observados y los datos de satélite son muy buenas con PERSIANN-CDR, Ta2m-ERA5 y SST ERA5. Sin embargo, la temperatura Ta2m-ERA5 tiene un sesgo importante entre 20% y 30% en los puntos-píxeles evaluados, y hasta un 60% en la estación Labe. En estudios previos también observaron correlaciones fuertes y sesgos similares con el producto de temperatura ERA-Interim, pero estos no afectaron en la modelación hidrológica (Bâ et al., 2018a, 2018b).

Los datos de SST, MSLP y RHUM del Atlántico se clasificaron en regiones utilizando ACP y análisis clúster. Los datos SST y RHUM se dividieron en 3 regiones y los datos MSLP en dos regiones (ver Figura 5-4). Se implementaron modelos lineales y no lineales para el pronóstico mensual de precipitación y de temperatura, y se encontraron las regiones del Atlántico que tienen mayor poder predictivo con las variables climáticas del Sahel. En el pronóstico de precipitación se implementaron cuatro modelos. Utilizando únicamente la SST como predictor, se implementaron los modelos de regresión lineal simple, modelo polinomial y un modelo exponencial (no lineal). Además, se utilizó un modelo de regresión

paso a paso con las covariables SST, MSLP, RHUM, Niño1+2, Niño3.4, Niño4, ONI y TNI.

La eficiencia de los modelos, de acuerdo con el criterio AIC y R², resultó ser mejor con el modelo polinomial, con un lag de 11 meses. Las estaciones localizadas en el sur tienen resultados similares, sin embargo, el lag es menor a seis meses. La eficiencia de los modelos de lluvia disminuye con el aumento de la latitud para los 4 modelos implementados. De hecho, las comparaciones entre la lluvia del producto PERSIANN-CDR y la lluvia observada tienen el mismo comportamiento, a medida que aumenta la latitud disminuye la correlación. Las regiones que mejor resultado aportan a la variabilidad de la lluvia en el Sahel son el extremo inferior del Golfo de Guinea y el norte del Atlántico tropical. La región que aporta menos en la lluvia es la región media del Atlántico, a la altura de la ZCIT.

En el pronóstico de temperatura se implementaron dos modelos lineales: un modelo de regresión lineal simple y un modelo polinomial o cuadrático. El modelo polinomial arrojó los mejores resultados, considerando la SST del Atlántico tropical norte y con lag de 14 y 16 meses. Sin embargo, solo se obtuvieron resultados satisfactorios ($R^2ajs > 0.5$ y p-valor < 0.05) en el norte del área de estudio y muy pocos píxeles en el sur de la cuenca Senegal.

Para cumplir con los objetivos planteados en la investigación, los pronósticos de precipitación y temperatura se desagregaron a una escala temporal diaria. El método utilizado (chow-lin) permite desagregar datos mensuales en diarios considerando una serie indicadora. La desventaja de este modelo es el tiempo de procesamiento, el cual puede tardar un tiempo considerable, que pueden ser varios minutos hasta horas.

Los datos de pronóstico se desagregaron en series diarias y se utilizaron en el modelo hidrológico CEQUEAU con los parámetros de calibración previamente obtenidos por Bâ et al. (2018a). Estos procesos facilitaron la modelación de los escurrimientos diarios de pronóstico. En la modelación hidrológica se requieren datos con distinta frecuencia, por lo general se prefiere el uso de datos diarios.

La eficiencia del modelo CEQUEAU con los datos diarios de pronóstico respondió satisfactoriamente en las cuencas de estudio con las series interanuales. Además, la eficiencia medida con el NSE en el periodo interanual fue entre 0.526 (para Bafing Makana) y 0.825 (para Oualia). En más del 70% de los años son valores positivos de NSE, y el 58% tienen NSE mayores a 0.5. El valor más bajo fue, NSE = -3.692.

Se recomienda utilizar otras variables que puedan explicar la variabilidad que no es explicada por las variables utilizadas en este estudio. Por ejemplo, la velocidad y dirección del viento, puesto que los vientos secos Harmatan son factor importante para la condensación de la humedad que es empujada desde el golfo de Guinea hacia África occidental. Además, es recomendable utilizar otros productos de lluvia y temperatura en el modelo hidrológico calibrado con los parámetros utilizados en este estudio. De esta manera se puede conocer si el modelo es sensible a los cambios de datos meteorológicos.

Es recomendable utilizar otros métodos como los modelos de series temporales o modelos autorregresivos (AR). Los modelos AR incluyen otras modificaciones como los modelos AR de media móvil (ARMA), los modelos autorregresivos integrados de media móvil (ARIMA). Además, se pueden utilizar los modelos del tipo ARIMAX que son una modificación de los modelos ARIMA en los cuales se utilizan covariables.

Se recomienda utilizar otras regiones de la SST, por ejemplo, el océano Índico, Pacífico, que no estén limitadas únicamente a las regiones de El Niño. Además, estos datos se pueden utilizar con resoluciones espaciales más gruesas, de tal manera que se reduzca el tiempo de procesamiento de grandes regiones.

Es recomendable utilizar otros desfases (lags) en las series de datos para los modelos de pronóstico, los cuales pueden ser tomados en cuenta con otros fines. Por ejemplo, desfases de dos o tres meses, los cuales pueden ser útiles para planificar la fechas de siembra.

Referencias

Referencias

- Abdolrahimi, M., 2016. The Effect of El Niño Southern Oscillation (ENSO) on World Cereal Production. The University of Sydney, Sydney, Australia.
- Adams, R.M., Chen, C.-C., McCarl, B.A., Weiher, R.F., 2014. The economic consequences of ENSO events for agriculture. Clim. Res. 13, 165–172. https://doi.org/10.3354/cr013165.
- Akaike, H., 1974. IEEE Transactions on Automatic Control. IEEE Trans. Automat. Contr. 19, 716–723. https://doi.org/10.1109/TAC.1974.1100705.
- AMS, 2012. Meteorological Glossary.
- Andersen, I., Dione, O., Jarosewich-Holder, M., Olivry, J.-C., 2005. The Niger River Basin:
 A Vision for Sustainable Healthcare, The Intern. ed, Sustainable Healthcare. The
 International Bank for Reconstruction and Development / The World Bank,
 Washington D.C, USA. https://doi.org/10.1002/9781118342527.ch4.

- Anderson, W., 2018. Does the El Niño Southern Oscillation Actually Matter for Food Security? [WWW Document]. Int. Res. Intitutute Clim. Soc. URL https://news.climate.columbia.edu/author/guest-blogger/.
- Aparicio, J., 2015. Fundamentos de Hidrología de superficie. México, México.
- Ashouri, H., Hsu, K.L., Sorooshian, S. Braithwaite, D.K., Knapp, K.R., Cecil, L.D., Nelson, B.R., Prat, O.P., 2015. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 96, 69–83. https://doi.org/10.1175/BAMS-D-13-00068.1.
- Ashouri, H., Nguyen, P., Thorstensen, A., Hsu, K., Sorooshian, S., Braithwaite, D., 2016.
 Assessing the efficacy of High-Resolution Satellite-based PERSIANN-CDR
 Precipitation Product in Simulating Streamflow. Am. Meteorloogical Soc. 17, 2061–2076. https://doi.org/10.1175/JHM-D-15-0192.1.
- Askew, A., 1989. Real-time intercomparison of hydrological models. New Dir. Surf. Water Model. 181, 125–132.
- Bâ, K., Balcázar, L., Diaz-Mercado, V., Ortiz, F., Gómez-Albores, M., Díaz-Delgado, C.,
 2018a. Hydrological Evaluation of PERSIANN-CDR Rainfall over Upper Senegal
 River and Bani River Basins. Remote Sens. 10, 1884.
 https://doi.org/10.3390/rs10121884.
- Bâ, K., Díaz-Delgado, C., Quentin, E., Guerra-Cobián, V.H., Ojeda-Chihuahua, J.I., Alin-Andrei, C., Franco-Plata, R., 2013a. Modelado hidrológico de grandes cuencas : caso de estudio del río Senegal, África Occidental. Tecnol. y Ciencias del Agua IV, 129– 136.
- Bâ, K., Díaz-Delgado, C., Quentin, E., Guerra-Cobián, V.H., Ojeda-Chihuahua, J.I., Cârsteanu, A.A., Franco-Plata, R., 2013b. Hydrological modeling of large watersheds:

case study of the Senegal River, West Africa, West Africa. Tecnol. y Ciencias del Agua 4, 129–136.

- Bâ, K., Díaz-Delgado, C., Rodríguez Osorio, V., 2001. Simulación de caudales de los ríos Amacuzac y San Jerónimo en el Estado de Mexico, México. Ing. Hidráulica en México XVI, 177–126.
- Bâ, K., Diaz-Mercado, V., Balcázar, L., Ortiz, F., Gómez-Albores, M., Díaz-Delgado, C., 2018b. Performance evaluation of satellite precipitation and its use for distributed hydrological modelling on Western Africa basins, in: 3RD International Conference On African Large River Basin Hydrology (ICALRBH). Alger, p. 3.
- Bâ, K., Diaz-Mercado, V., Gómez Albores, M., Díaz-Delgado, C., Nájera, N., Seidou, O., Ortiz, F., 2018c. Spatially distributed hydrological modelling of a Western Africa basin., in: 13th International Conference on Hydroinformatics HIC. Epic Series in Computing, Palermo, Italia, pp. 343–350. https://doi.org/10.29007/1xw5.
- Badr, H.S., Zaitchik, B.F., Guikema, S.D., 2013. Application of Statistical Models to the Prediction of Seasonal Rainfall Anomalies over the Sahel. J. Appl. Meteorol. Climatol. 53, 614–636. https://doi.org/10.1175/JAMC-D-13-0181.1.
- Balcázar, L., Bâ, K., Díaz-Delgado, C., Quentin, E., Minga-León, S., 2019. Modelado de caudales diarios en una cuenca del sur del Ecuador con precipitación y temperatura estimadas por satélite. Agrociencia 53, 465–486.
- Barichivich, J., Gloor, E., Peylin, P., Brienen, R.J.W., Schöngart, J., Espinoza, J.C., Pattnayak, K.C., 2018. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci. Adv. 4, 1–7. https://doi.org/10.1126/sciadv.aat8785.

- Barnston, A.G., Thiao, W., Kumar, V., 1996. Long-lead forecasts of seasonal precipitation in Africa using CCA. Weather Forecast. 11, 506–520. https://doi.org/10.1175/1520-0434(1996)011<0506:LLFOSP>2.0.CO;2.
- Biasutti, M., 2019. Rainfall trends in the African Sahel: Characteristics, processes, and causes. Wiley Interdiscip. Rev. Clim. Chang. 10, 1–22. https://doi.org/10.1002/wcc.591.
- Bourlès, B., Araujo, M., McPhaden, M.J., Brandt, P., Foltz, G.R., Lumpkin, R., Giordani, H., Hernandez, F., Lefèvre, N., Nobre, P., Campos, E., Saravanan, R., Trotte-Duhà, J., Dengler, M., Hahn, J., Hummels, R., Lübbecke, J.F., Rouault, M., Cotrim, L., Sutton, A., Jochum, M., Perez, R.C., 2019. PIRATA: A Sustained Observing System for Tropical Atlantic Climate Research and Forecasting. Earth Sp. Sci. 6, 577–616. https://doi.org/10.1029/2018EA000428.
- Brown, J.F., Loveland, T.R., Ohlen, D.O., Zhu, Z., 1999. The Global Gharacteristics Database: The Users' Perspective. Photogramm. Eng. Remote Sens. 65, 1069–1074.

Buontempo, C., 2010. Sahelian climate: past, current, projections.

- Chang, C.-P., Wang, B., Lau, N.-C.G., 2005. The Global Monsoon System: Research and Forecast, in: Chang, C.-P., Wang, B., Lau, N.-C.. (Eds.), The Global Monsoon System: Research and Forecast. World Meteorological Organization, Geneva, pp. 239–250.
- Charbonneau, R., Fortin, J.-P., Morin, G., 2009. The CEQUEAU model: description and examples of its use in problems related to water resource management. Hydrol. Sci. Bull. 22, 193–202. https://doi.org/10.1080/02626667709491704
- Chen, C.-C., McCarl, B.A., Adams, R.M., 2001. Economic Implications of Potential ENSO Frequency and Strength Shifts Economic Implications of Potential Climate Change Induced ENSO Frequency and Strength Shifts. Clim. Change 49. https://doi.org/10.1023/A.

- Chow, G.C., Lin, A., 1971. Best linear unbiased interpolation, distribution, and extrapolation of time series by related series. Rev. Econ. Stat. 53, 372–375.
- Chow, V. Te, Maidment, D.R., Mays, L.W., 1994. Hidrologia Aplicada. McGRAW-HILL, Bogotá, Colombia.
- CILSS, 2016. Landscapes of West Africa A Window on a Changing World. U.S. Geological Survey EROS, Ouagadougou, Burkina Faso.
- CONAGUA, 2010. Manual Teórico Práctico del Observador Meteorológico de Superficie 278.
- Dalgaard, P., 2008. Introductory Statistics with R, Journal of Chemical Information and Modeling. Springer. https://doi.org/10.1017/CBO9781107415324.004.
- Davis, R.E., 1976. Predictability of Sea Surface Temperature and Sea Level Pressure Anomalies over the North Pacific Ocean. J. Phys. Oceanogr. 6, 249–266.
- Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., Berg, L. Van De, Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimbergere, L., Healy, S.B., Hersbach, H., Hólm, E. V, Isaken, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., Vitart, F., 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. R. Meteorol. Soc. 137, 553–597. https://doi.org/10.1002/qj.828.
- Díaz-Mercado, V., Bâ, K., Quentin, E., Ortiz Madrid, F.H., Gama, L., 2015. Hydrological Model to Simulate Daily Flow in a Basin with the Help of a GIS. Open J. Mod. Hydrol. 5, 58–67. https://doi.org/10.4236/ojmh.2015.53006.
- Eastman, R., 2016. TerrSet Manual. Clark Labs, Worcester, MA., USA.

- Encyclopedia-Britannica, 2019. Atmospheric pressure [WWW Document]. URL https://www.britannica.com/science/atmospheric-pressure.
- Fensholt, R., Rasmussen, K., Kaspersen, P., Huber, S., Horion, S., Swinnen, E., 2013. Assessing land degradation/recovery in the african sahel from long-term earth observation based primary productivity and precipitation relationships. Remote Sens. 5, 664–686. https://doi.org/10.3390/rs5020664.
- Fernández López, J., 2018. Las corrientes marinas [WWW Document]. Hispanoteca. URL http://www.hispanoteca.eu/Hispanoamérica/Mapas/Corrientesoceánicas.htm (accessed 8.10.19).
- Folland, C., Owen, J., Ward, M.N., Colman, A., 1991. Prediction of seasonal rainfall in the sahel region using empirical and dynamical methods. J. Forecast. 10, 21–56. https://doi.org/10.1002/for.3980100104.
- Foltz, G.R., Brandt, P., Richter, I., Rodríguez-Fonseca, B., Hernandez, F., Dengler, M., Rodrigues, R.R., Schmidt, J.O., Yu, L., Lefevre, N., Da Cunha, L.C., McPhaden, M.J., Araujo, M., Karstensen, J., Hahn, J., Martín-Rey, M., Patricola, C.M., Poli, P., Zuidema, P., Hummels, R., Perez, R., Hatje, V., Lübbecke, J.F., Polo, I., Lumpkin, R., Bourles, B., Asuquo, F.E., Lehodey, P., Conchon, A., Chang, P., Dandin, P., Schmid, C., Sutton, A., Giordani, H., Xue, Y., Illig, S., Losada, T., Grodsky, S.A., Gasparin, F., Lee, T., Mohino, E., Nobre, P., Wanninkhof, R., Keenlyside, N., Garcon, V., Sánchez-Gómez, E., Nnamchi, H.C., Drévillon, M., Storto, A., Remy, E., Lazar, A., Speich, S., Goes, M., Dorrington, T., Johns, W.E., Moum, J.N., Robinson, C., Perruche, C., de Souza, R.B., Gaye, A.T., López-Parages, J., Monerie, P.-A., Castellanos, P., Benson, N.U., Hounkonnou, M.N., Duhá, J.T., Laxenaire, R., Reul, N., 2019. The Tropical Atlantic Observing System. Mar. Sci. 6, 1-36. Front. https://doi.org/10.3389/fmars.2019.00206.

- Frost, J., 2018. The Difference between Linear and Nonlinear Regression Models [WWW Document]. URL https://statisticsbyjim.com/regression/difference-between-linear-nonlinear-regression-models/. (accessed 11.10.20).
- Gado Djibo, A., Karambiri, H., Seidou, O., Sittichok, K., Philippon, N., Paturel, J., Saley, H., 2015a. Linear and Non-Linear Approaches for Statistical Seasonal Rainfall Forecast in the Sirba Watershed Region (SAHEL). Climate 3, 727–752. https://doi.org/10.3390/cli3030727.
- Gado Djibo, A., Seidou, O., Karambiri, H., Sittichok, K., Paturel, J.E., Moussa Saley, H., 2015b. Development and assessment of non-linear and non-stationary seasonal rainfall forecast models for the Sirba watershed, West Africa. J. Hydrol. Reg. Stud. 4, 134–152. https://doi.org/10.1016/j.ejrh.2015.05.001.
- García, L.E., Rodríguez, D.J., Wijnen, M., Pakulski, I., 2016. Earth Observation for Water Resources Management. Washington, USA. https://doi.org/10.1596/978-1-4648-0475-5.
- Glantz, M., 1977. The value ot a Long-Range weather Forecast for the west African sahel. Bull. Am. Meteorol. Soc. 58, 150–158.
- Guerra-Cobián, V.H., 2007. Análisis del efecto de discretización espacial en el modelado de cuencas hidrológicas utilizando el modelo distribuido CEQUEAU-ONU. Tesis de Doctorado. Centro Interamericano de Recursos del Agua, Universidad Autónoma del Estado de México, Toluca, México.
- Guo, H., Bao, A., Liu, T., Chen, S., Ndayisaba, F., 2016. Evaluation of PERSIANN-CDR for Meteorological Drought Monitoring over China. Remote Sens. 8, 1–17. https://doi.org/10.3390/rs8050379.

- Gupta, H.V., Sorooshian, S., Yapo, P.O., 1999. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 4, 135–143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135).
- Haarsma, R.J., Selten, F.M., Weber, S.L., Kliphuis, M., 2005. Sahel rainfall variability and response to greenhouse warming. Geophys. Res. Lett. 32, 1–4. https://doi.org/10.1029/2005GL023232.
- Hadley, A., Francois, R., 2016. Package dplyr: A Grammar of Data Manipulation.
- Harms, A.A., Campbell, T.H., 1967. An Extension to the Thomas-Fiering Model [or the Sequential Generation o[Streamflo. Water Resour. Res. 3, 653–661.
- Hatzaki, M., Flocas, H.A., Asimakopoulos, D.N., Maheras, P., 2007. The eastern Mediterranean teleconnection pattern: Identification and definition. Int. J. Climatol. 27, 727–737. https://doi.org/10.1002/joc.1429.
- Heizer, J., Render, B., 2010. Principios de Administración de Operaciones, Septima ed. ed, Pearson Educación. Pearson, Naucalpan, México.
- Herein, M., Drótos, G., Haszpra, T., Márfy, J., Tél, T., 2017. The theory of parallel climate realizations as a new framework for teleconnection analysis. Sci. Rep. 7, 1–11. https://doi.org/10.1038/srep44529.
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J.N., 2020. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049. https://doi.org/10.1002/qj.3803.

- Hidore, J.J., Oliver, J.E., Snow, M., Snow, R., 2010. Climatology and Atmospheric Science, Third. ed. Pearson, USA.
- Hong, Y., Gochis, D., CHeng, J.-T., Hsu, K.-L., Sorroshian, S., 2007. Evaluation of PERSIANN-CCS Rainfall Measurement Using the NAME Event Rain Gauge Network. J. Hydrometeorol. 8, 469–482. https://doi.org/10.1175/JHM574.1.
- Huffman, G.J., Adler, R.F., Bolvin, D.T., Gu, G., Nelkin, E.J., Bowman, K.P., Hong, Y., Stocker, E.F., Wolff, D.B., 2007. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 8, 38–55. https://doi.org/10.1175/JHM560.1.
- Huffman, G.J., Adler, R.F., Bolvin, D.T., Nelkin, E.J., 2010. The TRMM Multi-Satellite Precipitation Analysis (TMPA), Satellite Rainfall Applications for Surface Hydrology. https://doi.org/10.1007/978-90-481-2915-7.
- Ihaka, R., Gentleman, R., 1996. R: A Language for Data Analysis and Graphics. J. Comput. Graph. Statics 5, 299–314.
- IPCC, 2013. Glosario, in: Planton, S. (ed. ., Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Cambio Climático 2013. Cambridge University Press, Cambridge, Nueva York, NY, p. 204.
- IRI, 2020a. El Niño [WWW Document]. URL https://iridl.ldeo.columbia.edu/maproom/ENSO/New/phase_elnino.html. (accessed 2.23.19).
- IRI, 2020b. Walker: Identifying the Southern Oscillation [WWW Document]. URL https://iridl.ldeo.columbia.edu/maproom/ENSO/New/walker.html (accessed 2.2.19).
- IRI, 2020c. Walker: Identifying the Southern Oscillation [WWW Document]. URL https://iridl.ldeo.columbia.edu/maproom/ENSO/New/walker.html. (accessed 2.6.19).

Islaqm, M.R., 2018. R Program for Temporal disaggregation: Denton's Method.

- Janicot, S., Lafore, J.-P., Thorncroft, C., 2011. THE WEST AFRICAN MONSOON, in: Chang, C.-P., Ding, Y., Lau, G.N.-C., Johnson, R.H., Wang, B., Yasunar, T. (Eds.), The Global Monsoon System: Research and Forecast. World Scientific, pp. 111–135. https://doi.org/https://doi.org/10.1142/9789814343411_0008
- Janicot, S., Trzaska, S., Poccard, I., 2001. Summer Sahel-ENSO teleconnection and decadal time scale SST variations. Clim. Dyn. 18, 303–320.
- Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E., 2008. Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT) [WWW Document]. CGIAR-CSI. URL http://srtm.csi.cgiar.org. (accessed 1.13.16).
- Joyce, R.J., Janowiak, J.E., Arkin, P.A., Xie, P., 2004. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 5, 487–503. https://doi.org/doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.
- Kapetsky, J.M., Aguilar-Manjarrez, J., 2009. Sistemas de información geográfica, sensores remotos y mapeo para el desarrollo y la gestión de la acuicultura marina, FAO, Documento Tecnico de Pesca Nro. 458. Roma, Italia.
- Khamis, H., 2008. Measures of association: How to choose? J. Diagnostic Med. Sonogr. 24, 155–162. https://doi.org/10.1177/8756479308317006.
- Kiem, A.S., Franks, S.W., 2001. On the identification of ENSO-induced rainfall and runoff variability : a comparison of methods and indices and runoff variability : a comparison of methods. Hydrol. Sci. J. 46, 715–727. https://doi.org/10.1080/02626660109492866.
- Kühnlein, M., Appelhans, T., Thies, B., Nauss, T., 2014. Improving the accuracy of rainfall rates from optical satellite sensors with machine learning A random forests-based

approach applied to MSG SEVIRI. Remote Sens. Environ. 141, 129–143. https://doi.org/10.1016/j.rse.2013.10.026.

- Kutner, M.H., Nachtsheim, C.J., John, N., Li, W., 1997. Applied Linear Statistical Models, Fifth Edit. ed, Journal of Quality Technology. McGraw-Hill, New York. https://doi.org/10.1080/00224065.1997.11979760.
- L'Hote, Y., Dubreuil, P., Lerique, J., 1996. Carte des types de climats "en Afrique Noire a l'ouest du Congo". Rappels, et extension aux regimes hydrologiques. IAHS-AISH Publ. 55–65.
- L'Hôte, Y., Mahé, G., 1996. Afrique de l'Ouest et centrale, précipitations moyennes annuelles (période 1951-1989).
- Lebel, T., Cappelaere, B., Galle, S., Hanan, N., Kergoat, L., Levis, S., Vieux, B., Descroix, L., Gosset, M., Mougin, E., Peugeot, C., Seguis, L., 2009. AMMA-CATCH studies in the Sahelian region of West-Africa: An overview. J. Hydrol. 375, 3–13. https://doi.org/10.1016/j.jhydrol.2009.03.020.
- Lind, Marchal, Wathen, 2008. Estadística aplicada a los negocios y la econimía, Decimoterc. ed. McGRAW-HILL, México D.F, México.
- Llamas, J., 1993. Hidrología General. Servicio editorial de la Universidad del País Vasco, Bilbao, España.
- Llanos, H., Bâ, K., 2011. Simulación de caudales de los ríos Nervión e Ibaizabal. País Vasco. Rev. Geol. Apl. a la Ing. y al Ambient. 1, 13–23.
- Llanos, H., Ba, K.M., Canalejo Castiella, A., 1999. Modelización hidrológica de la cuenca alta del río Ega (País Vasco y Navarra). Ing. del Agua 6, 241–250.
- Magaña-Hernández, F., Muñoz-Gómez, A.C., Mora-Ortíz, R.S., Quiroga, L.A., Guerra-Cobián, V.H., 2021. Estimación De Caudales En Cuencas No Aforadas Por El Modelo

HidrológicoCequeau.Agrociencia55,99–115.https://doi.org/10.47163/agrociencia.v55i2.2389.

- May, J., Guengant, J.-P., Brooke, T.R., 2014. Demographic Challenges of the Sahel [WWW Document]. URL https://www.prb.org/sahel-demographics/. (accessed 3.22.18).
- McGregor, G.R., Ebi, K., 2018. El Niño Southern Oscillation (ENSO) and health: An overview for climate and health researchers. Atmosphere (Basel). 9. https://doi.org/10.3390/atmos9070282.
- McPhaden, M.J., Meyers, G., Ando, K., Masumoto, Y., Murty, V.S.N., Ravichandran, M., Syamsudin, F., Vialard, J., Yu, L., Yu, W., 2009. RAMA: The research moored array for African-Asian-Australian monsoon analysis and prediction. Bull. Am. Meteorol. Soc. 90, 459–480. https://doi.org/10.1175/2008BAMS2608.1.
- Meteoterm, 2018. International Meteorological Vocabulary [WWW Document]. URL https://public.wmo.int/es/recursos/meteoterm.
- Mooney, P.A., Mulligan, F.J., Fealy, R., 2011. Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland. Int. J. Climatol. 31, 545–557. https://doi.org/10.1002/joc.2098.
- Moriasi, D.N., Arnold, J.G., Liew, M.W. Van, Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. Am. Soc. Agric. Biol. Eng. 50, 885–900. https://doi.org/http://dx.doi.org/10.13031/2013.23153.
- Moriasi, D.N., Gitau, M.W., Pai, N., Daggupati, P., 2015. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Am. Soc. Agric. Biol. Eng. 58, 1763–1785. https://doi.org/10.13031/trans.58.10715.

Morin, G., 2009. CEQUEAU. Québec, Canada.

- Morin, G., 2002. CEQUEAU hydrological model, in: Singh, V.P., Frevert, D. (Eds.), Mathematical Models of Large Watershed Hydrology. pp. 507–576.
- Morin, G., Paquet, P., 2007. Modèle hydrologique CEQUEAU, INRS-ETE. Quebec.
- Nash, J.E., Sutcliffe, J. V., 1970. River flow forecasting through conceptual model. J. Hydrol. 10, 282–290.
- National Centers for Environmental Information, 2016. GHRSST Level 4 AVHRR_OI Global Blended Sea Surface Temperature Analysis (GDS version 2) from NCEI [WWW Document]. Ver. 2.0. PO.DAAC. URL https://doi.org/10.5067/GHAAO-4BC02 (accessed 9.1.18).
- Nguyen, P., Ombadi, M., Sorooshian, S., Hsu, K., Aghakouchak, A., Ashouri, H., Thorstensen, A.R., 2018. The PERSIANN Family of Global Satellite Precipitation Data : A Review and Evaluation of Products. Hydrol. Earth Syst. Sci. Discuss. 2018, 1–34. https://doi.org/10.5194/hess-2018-177.
- Nicholson, S., 2012. The West African Sahel: A Review of Recent Studies on the Rainfall Regime and Its Interannual Variability. ISRN Meteorol. 2013, 1–32. https://doi.org/http://dx.doi.org/10.1155/2013/453521.
- Nicholson, S., 2000. Land surface processes and Sahel climate. Rev. Geophys. 38, 117–139.
- Nicholson, S., Tucker, C.J., Ba, M.B., 1998. Desertification, Drought, and Surface Vegetation: An Example from the West African Sahel. Bull. Am. Meteorol. Soc. 79, 815–829.
- Nicholson, S.E., Kim, J., 1997. The relationship of the el MNO-southern oscillation to African rainfall. Int. J. Climatol. 17, 117–135. https://doi.org/10.1002/(SICI)1097-0088(199702)17:2<117::AID-JOC84>3.0.CO;2-O.

Novales, A., 2016. Estimación de modelos no lineales Contents.

OMM-N°168, 1994. Guía de Prácticas Hidrológicas, Quinta edi. ed. Organización Meteorológica Mundial, Geneva, Suiza.

OMM N°100, 2011. Guía de prácticas climatológicas.

- OMM N°485, 2017. Manual del Sistema Mundial de Proceso de Datos y de Predicción. Genova, Suiza.
- OMM N°8, 2010. Guía de Instrumentos y Métodos de Observación Meteorológicos Guía de Instrumentos y Métodos de Observación Meteorológicos, 2008th ed.
- Paquet, E., 2019. Synthetic hydrograph generation by hydrological donors. Hydrol. Sci. J. 64, 570–586. https://doi.org/10.1080/02626667.2019.1593418
- PennState, 2021. Cross Correlation Functions and Lagged Regressions [WWW Document]. Pennsylvania State Univ. URL https://online.stat.psu.edu/stat510/lesson/8/8.2.
- Piani, C., Harter, J.O., Coppola, E., 2009. Statistical bias correction for daily precipitation in Regional Climate Models over Europe. Theor. Appl Clim. 99, 187–192. https://doi.org/10.1007/s00704-009-0134-9.
- Pirret, J.S.R., Daron, J.D., Bett, P.E., Fournier, N., Foamouhoue, A.K., 2020. Assessing the skill and reliability of seasonal climate forecasts in Sahelian West Africa. Weather Forecast. 35, 1035–1050. https://doi.org/10.1175/WAF-D-19-0168.1.
- Pöyry, 2017. GIS Hydropower Resource Mapping and Climate Change Scenarios for the ECOWAS Region, Centre for Renewable Energy and Energy Efficiency.

QGIS.org, 2021. QGIS Geographic Information System.

R Core Team, 2021. R: A language and environment for statistical computing.

- Reynolds, R.W., Smith, T.M., 1994. Improved Global SST Analyses Using OI. J. Clim. 7, 929–948.
- Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S., Schlax, M.G., 2007. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473– 5496. https://doi.org/10.1175/2007JCLI1824.1.
- Rivas, G., López, L.A., Velasco, A., 1993. Regresión no lineal. Rev. Colomb. Estadística 14, 89–102.
- Rodríguez-Fonseca, B., Mohino, E., Mechoso, C.R., Caminade, C., Biasutti, M., Gaetani, M., Garcia-Serrano, J., Vizy, E.K., Cook, K., Xue, Y., Polo, I., Losada, T., Druyan, L., Fontaine, B., Bader, J., Doblas-Reyes, F.J., Goddard, L., Janicot, S., Arribas, A., Lau, W., Colman, A., Vellinga, M., Rowell, D.P., Kucharski, F., Voldoire, A., 2015. Variability and predictability of west African droughts: A review on the role of sea surface temperature anomalies. J. Clim. 28, 4034–4060. https://doi.org/10.1175/JCLI-D-14-00130.1.
- Rowell, D.P., 2001. Teleconnections between the tropical Pacific and the Sahel. Q. J. R. Meteorol. Soc. 127, 1683–1706. https://doi.org/10.1002/qj.49712757512.
- Rowell, D.P., Folland, C.K., Maskell, K., Ward, M.N., 1995. Variability of summer rainfall over tropical north Africa (1906–92): Observations and modelling. Q. J. R. Meteorol. Soc. 121, 669–704.
- RStudio Team, 2021. RStudio: Integrated Development Environment for R.
- Rumsey, D.J., 2020. Statistics Workbook For Dummies [WWW Document]. URL https://www.dummies.com/education/math/statistics/how-to-interpret-a-correlation-coefficient-r/.

- Samimi, C., Fink, A.H., Paeth, H., 2012. The 2007 flood in the Sahel: causes, characteristics and its presentation in the media and FEWS NET. Nat. Hazards Earth Syst. Sci. 12, 313–325. https://doi.org/10.5194/nhess-12-313-2012.
- Sax, C., Steiner, P., 2013. Temporal Disaggregation of Time Series. R J. 5, 80–87.
- Sax, C., Steiner, P., Di Fonzo, T., 2013. Package tempdisagg. CRAN. https://doi.org/10.32614/rj-2013-028.
- Schepen, A., Wang, Q.J., Robertson, D.E., 2012. Combining the strengths of statistical and dynamical modeling approaches for forecasting Australian seasonal rainfall. J. Geophys. Res. 117, 1–9. https://doi.org/10.1029/2012JD018011.
- Sillmann, J., Thorarinsdottir, T., Keenlyside, N., Schaller, N., Alexander, L. V, Hegerl, G., Seneviratne, S.I., Vautard, R., Zhang, X., Zwiers, F.W., 2017. Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather Clim. Extrem. 18, 65–74. https://doi.org/10.1016/j.wace.2017.10.003.
- Sittichok, K., 2015. Improving Seasonal Rainfall and Streamflow Forecasting in the Sahel Region via Better Predictor Selection , Uncertainty Quantification and Forecast Economic Value Assessment. University of Ottawa, Ottawa, Canada, Canada.
- Sittichok, K., Gado Djibo, A., Seidou, O., Moussa Saley, H., Karambiri, H., Paturel, J., 2016. Statistical seasonal rainfall and streamflow forecasting for the Sirba watershed, West Africa, using sea-surface temperatures. Hydrol. Sci. J. 61, 805–815. https://doi.org/10.1080/02626667.2014.944526.
- Sittichok, K., Seidou, O., Gado Djibo, A., Rakangthong, N.K., 2018. Estimation of the added value of using rainfall–runoff transformation and statistical models for seasonal streamflow forecasting. Hydrol. Sci. J. 63, 630–645. https://doi.org/10.1080/02626667.2018.1445854.

- Sorooshian, S., Hsu, K.L., Gao, X., Gupta, H. V., Imam, B., Braithwaite, D., 2000. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 81, 2035–2046. https://doi.org/10.1175/1520-0477(2000).
- Spiegel, M.R., Schiller, J., Srinivasan, R.A., 2010. Probabilidad y Estadística, 2da. ed. McGraw-Hill, Bogotá, Colombia.
- Stock, J.H., Watson, M. m., 2012. Introductión to Econometrics, Tercera. ed, British Journal of Cancer. Pearson, Madrid.
- Su, F., Yang, H., Lettenmaier, D.P., 2008. Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and Its Utility in Hydrologic Prediction in the La Plata Basin. J. Hydrometeorol. 9, 622–640. https://doi.org/10.1175/2007JHM944.1.
- Sultan, B., Janicot, S., 2003. The West African monsoon dynamics. Part II: The "preonset" and "onset" of the summer monsoon. J. Clim. 16, 3407–3427. https://doi.org/10.1175/1520-0442(2003)016<3407:TWAMDP>2.0.CO;2.
- Thorncroft, C., Lamb, P., 2005. The West African Monsoon, in: Chang, C.-P., Wang, B., Lau, N.-C.. (Eds.), The Global Monsoon System: Research and Forecast. World Meteorological Organization, Geneva, pp. 111–135. https://doi.org/10.1142/9789814343411_0008.
- Traore, B., Van Wijk, M.T., Descheemaeker, K., Corbeels, M., Rufino, M.C., Giller, K.E., 2014. Evaluation of climate adaptation options for Sudano-Sahelian cropping systems.
 F. Crop. Res. 156, 63–75. https://doi.org/10.1016/j.fcr.2013.10.014.
- Trenberth, K.E., Stepaniak, D.E., 2001. Indices of El Niño Evolution. Clim. J. 14, 1697– 1701. https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2.
- Trenberth, K.E., Stepaniak, D.P., Caron, J.M., 2000. The Global Monsoon as Seen through the Divergent Atmospheric Circulation. J. Clim. 13, 3969–3993. https://doi.org/10.1175/1520-0442(2000)013<3969:TGMAST>2.0.CO;2.

- Valdés-Pineda, R., Demaría, E.M.C., Valdés, J.B., Wi, S., Serrat-Capdevila, A., 2016. Bias correction of daily satellite-based rainfall estimates for hydrologic forecasting in the Upper Zambezi, Africa. Hydrol. Earth Syst. Sci. In press, 1:28. https://doi.org/10.5194/hess-2016-473.
- Vinuesa, P., 2016. Regresión lineal simple y polinomial [WWW Document]. CCG-UNAM. URL https://www.ccg.unam.mx/~vinuesa/R4biosciences/docs/Tema9_regresion.html (accessed 2.18.20).
- Vischel, T., Panthou, G., Peyrillé, P., Roehrig, R., Quantin, G., Lebel, T., Wilcox, C., Beucher, F., Budiarti, M., 2019. Precipitation Extremes in the West African Sahel, in: Venugopal, V., Sukhatme, J., Murtugudde, R., Roca, R. (Eds.), Tropical Extremes: Natural Variability And Trends. Elsevier Inc., pp. 95–138. https://doi.org/10.1016/b978-0-12-809248-4.00004-2.
- Wickham, H., 2021. tidyverse package [WWW Document]. URL https://tidyverse.tidyverse.org/. (accessed 3.17.21).
- Wickham, H., 2014. Tidy Data 59.
- Wilks, D.S., 1995. Statistical Methods in the Atmospheric Sciences: an Introduction, first edit. ed. California: A Division of Harcourt Brace & Com- pany, California, USA.
- WMO-Nro. 385, 2012. International glossary of hydrology. World Meteorological Organization Unesco.
- WMO, 1992. Simulated Real-Time Intercomparison of Hydrological Models, Operational Hydrology Report. Geneva.
- WMO, 1986. Results of an intercomparison of models of snowmelt runoff, in: Modelling Snowmwlt-Induced Processes (Proccedings of the Budapest Symposium, July 1986). Geneve.
WMO Nro. 182, 1992. International meteorological vocabulary. World Meteorological Organization Unesco.

World Bank, 2013. Transforming Agriculture in the Sahel What Would It Take? The World Bank.

Los Anexos se dividen en tres secciones: A, B y C.

En el Anexo A se presentan los códigos de los programas escritos en lenguaje R. Los códigos son de acceso abierto. Se solicita citar como se menciona a continuación:

Autor: Luis Balcázar, 2021.

Tesis de Doctorado en Ciencias del Agua.

Instituto Interamericano de Tecnología y Ciencias del Agua, Universidad Autónoma del Estado de México.

Distribución: libre.

En el Anexo B se adjuntan tablas complementarias de la tesis, y en el Anexo C se adjuntan complementos de información estadística.

Anexo A. Códigos escritos en R.

Anexo A1. Código para lectura de datos raster.

Autor: Luis Balcázar

Instituto Interamericano de Tecnología y Ciencias del Agua

Distribución: libre

```
# Datos raster
# Datos originales mensuales Tif
# Requiere las librerias
library(raster)
library (gdalUtils)
library (rgdal)
library (zoo)
library(dplyr)
library(rsaga)
# Este script lee todos los datos desde una ubicación, que contiene todos los datos
# Lista los datos y apila las imágenes raster, recorta considereando un shapefile de
# un polígono del Área de estudio. Extrae el año-mes y crea un vector de fechas.
# Aacumula los datos anuales (raster) y se obtiene la precipitaciónn media fromato
# raster para el Área de estudio, de un total 35 años.
rm(list = ls())
path = setwd('D:/Directorio/datos_Tif')
lf <- list.files(path, pattern = "*.tif$", all.files = T, recursive = T, full.names = F)</pre>
rs <- raster::stack(lf)</pre>
vct <- readOGR("D:/Directorio/poligino.shp")</pre>
af <- raster::crop(x = rs, y = vct)
af <- stack(af)
sbt = substr(unique(lf), 28, 33) # coordenadas de fecha
sbt = paste0(sbt, "01")
sbt <- as.Date(sbt, "%Y%m%d")</pre>
s <- set2(af, sbt)</pre>
year_r <- function(x)as.numeric(format(x, '%Y'))</pre>
yearPrc <- zApply(s, by=year_r, fun = sum)</pre>
# == obtiene un plot de la primera imagen.
plot(yearPrc[[1]])
# == raster de promedio de prc de 35 años
prc <- raster::mean(yearPrc)</pre>
```

Anexo A2. Estimación del lag óptimo.

creador: Luis Balcázar

Instituto Interamericano de Tecnología y Ciencias del Agua

Distribución: libre

citar: Balcázar, L. (2021)

‡ Correlacion cruzada con desfase temporal dos series de datos. # La variable precipitacion se desfaza mes a mes y se compara con SST # Se utiliza las series de cada pixel o (cuadro SST) - Atlántico (10° x 10°) # con el CDR de Africa Occidental, pixel donde se ubica la estaci?n # sin?ptica (0.25° x 0.25°). library(rgdal) library(sp) library(raster) library(dplyr) library(magrittr) library(tidyverse) library(lubridate) library (RStoolbox) library(maptools) # datos GHRSST 1983-2018 (36 anios) pth <- "D:/Directorio/datos_sst_celcius_Tif"</pre> lf <- list.files(path = pth, pattern = '.tif\$', all.files = T, full.names = T)</pre> rs <- raster::stack(lf)</pre> # leer un vector del área de estudio v recortar el raster polv <- readOGR("D:/Directorio/deLosDatos/vector area.shp")</pre> r_cortar <- crop(rs, p) r_cortarC <- r_cortar - 273.15 rP <- raster::rasterToPoints(r_cortar)</pre> ‡ extraer las corrdenadas de cada cuadro cor <- coordinates(p) cor <- data.frame(id = 1:length(cor[,1]), cor)</pre> names(cor) <- c('id', 'x', 'y') # obtener regiones por ACP rasterPCA <- RStoolbox::rasterPCA(img = r_cortar,</pre> nSamples = NULL, nComp = 6, spca = T) plot(rasterPCA\$map[[1]]) rsBrk <- raster::stack(rasterPCA\$map)</pre>

```
# vector de fechas
sbt <- str_extract(string = lf, pattern = '[0-9]\\d{5}')</pre>
sbt <- as.Date(paste0(sbt, '01'), "%Y%m%d")</pre>
# ubicación de estaciones sinópticas (X,Y), extraer datos
ubc <- read.csv('D:/Directorio/deLosDatos/sinopticas.csv') %>%
 dplyr::select(c('X', 'Y', 'Gauge_name'))
ext_cdr <- raster::extract(rs, ubc[,c('X','Y')])</pre>
# unir los nombres y coordenadas al df ext_cdr
df_cdr <- cbind(ubc[,c('Gauge_name', 'X', 'Y')], ext_cdr) $>$
    pivot_longer(4:ncol(.), names_to = 'date', values_to = 'prcCdr') $>$
  dplyr::mutate(date = paste0(date, '01'),
                date = as.Date(date, 'AfrWstCDR_%Y%m%d')) %>%
  arrange(Gauge_name)
# unir los data frames
datos <- left_join(df_cdr, df_sst, 'date') %>% arrange(pixel, Gauge_name)
datos$n <- paste('pixel',datos$pixel, datos$Gauge_name, sep = "_")</pre>
# bucle para obtener la correlacion cruzada con desface temporal
cod = unique(datos$n)
dataFrame = data.frame()
for(i in cod){
  tmp <- subset(datos, datos$n == i)</pre>
for(k in 0:12){
    df0 <- tmp
    df0$prcCdr <- dplyr::lag(df0$prcCdr, k)
    rP <- function(var1, var2){</pre>
      cor(var1.
          var2,
          method = "pearson",
          use = "na.or.complete")
    3
    r2 <- function(var1, var2){</pre>
      cor(var1,
          var2,
          method = "pearson",
          use = "na.or.complete")^2
    3
    cP <- round(rP(df0$sst, df0$prcCdr),3)
    cd <- round(r2(df0$sst, df0$prcCdr),3)
    coef <- coefficients(lm(df0$sst ~ df0$prcCdr))</pre>
    dataFrame <- dplyr::bind_rows(</pre>
      dataFrame,
      c(Codigo = i, Lag = k, coefPearson = cP, coefDet = cd,
        lm(df0$prcCdr ~ df0$sst)$coefficients))
 }
}
# head(dataFrame0,24)
dataFrame <- dataFrame %>% arrange(desc(coefDet))
dataFrame$a <- dataFrame$`(Intercept)`</pre>
dataFrame$b <- dataFrame$`df0$sst` # revisar $sst</pre>
dataFrame <- dataFrame %>% mutate(a = round(as.numeric(a),2), b = round(as.numeric(b),2))
dataFrame$`(Intercept)` <- NULL</pre>
dataFrame$`df0$sst` <- NULL
                                   # revisar $sst
dataFrame %<>% separate(col = Codigo, into = c('p', 'pixel', 'name'), sep = '_') %>%
  dplyr::select(-p)
# guardar el data frame
setwd('C:/Users/Asus/Documents/MEGA/01 CIR/10 DOCTORADO/Comparancion_SST-CDR')
write.csv(x = dataFrame, row.names = F,
          file = "lag_SST_CDR_Lag_0-12_todo.csv")
```

Anexo A3. Clasificación del Atlántico por ACP y análisis clúster.

```
# 1)
        descargar los datos de satélite
# 2)
        leer las im?genes diarias de SST
# 3)
        agrupar las im?genes por mes
# 4.1) adjuntar o crear una malla de 10° x 10° u (otra dimensión), o
# 4.2) crear un grupo de xeles aleatorios
$ 5) extraer los valores de temperatura para cada mes y año de la serie de datos
# 6)
        convertir el data frame en un vector
rm(list = ls())
# requiere
library(rgdal)
library(sf)
library(raster)
library(dplyr)
library (magrittr)
library(tidyverse)
library(lubridate)
library (RStoolbox)
library (maptools)
library (ggfortify)
# SST
# datos GHRSST 1983-2019 (37 anios)
pth <- "~/Documentos/04SIG/01Rawdata/sst/sst wAfr/sst mensual crop Atlantico/"
lf <- list.files(path = pth, pattern = '.tif$', all.files = T, full.names = T)</pre>
rs <- raster::stack(lf)
plot(rs[[7]])
#= generar un grid del área de estudio
r <- raster(ext = extent(-70, 20, -25, 40), res=c(10, 10)) # xmin xmax ymin ymax
values(r) <- 1:ncell(r)
r <- projectRaster(r, crs= "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0")
p <- rasterToPolygons(r)
plot(p, add = T)
# recortar el area de estudio (grid construido aqui)
rs_crop <- crop(rs, p)
 plot(rs_crop[[1]])
# # guardar
 for(i in 1: nlayers(rs_crop)) {
   writeRaster(rs_crop[[i]],
              filename = paste0('~/Documentos/04SIG/01Rawdata/sst/sst_mensual_crop_Atlantico/',
                              names(rs_crop[[i]]), '.tif'),
             overwrite = TRUE)
 # leer los datos SST recortados
 path <- "~/Documentos/04SIG/01Rawdata/sst_er5/sst_era_wAfr/"
lf <- list.files(path = path, pattern = '.tif$', all.files = T, full.names = T)</pre>
 rs_crop <- raster::stack(lf)
 plot(rs_crop[[1]])
.....
# ACP-cluster
rasterPCA_SST <- RStoolbox::rasterPCA(img = rs_crop,
                             nSamples = NULL, nComp = nlayers(rs_crop), spca = T) # nlayers(rs_crop)
 # CP
modelPCA_SST <- rasterPCA_SST$model
# ;número óptimo de PC?
plot(modelPCA_SST, type = 'line', main = 'Componentes principales (CP)')
# resúmenes
summary (rasterPCA SST$map)
loadings(rasterPCA_SST$model)
# los cp1 y cp2 explican el 97% de la varinaza
summary (modelPCA SST)
# observar los componentes
plot(rasterPCA_SST$map[[3]])
pca <- raster::stack(rasterPCA_SST$map)</pre>
# componentes PC1 y Pc2
comp1 <- rasterPCA_SST$map[[1]]</pre>
```

comp2 <- rasterPCA SST\$map[[2]]						
<pre>pca <- raster::stack(comp1, comp2)</pre>						
t munder las amongo DCI a D-2						
<pre># guaradar los componentes PC1 y PC2</pre>						
options="INTEDLEAVE=BAND"	nues.	· · · ·				
overwrite=TRIE)						
# librerias para cluster						
library(factoextra)						
library(NbClust)						
# ¿número óptimo de k, en cluster?						
# prueba error						
<pre>pca.df <- as.data.frame(pca, xy = TRUE) \$>\$ na.omit()</pre>						
<pre>sample <- pca.df[sample(nrow(pca.df), 15000),]</pre>						
and the second						
# metodo de codo						
<pre>IVIZ_nDClust(sample, xmeans, method = 'Wss') +</pre>						
laba (ttitle = 'Número éptimo de conglemerador'	serbr	ue / T				
subtitle = "Elbow method"						
x = 'Número k de clústers'.						
y = 'Suma de cuadrados totales del clúster')						
# método de silueta						
<pre>silueta <- fviz_nbclust(sample, kmeans, method = 'silhouet</pre>	tte')	+				
labs(title = 'Número óptimo de conglomerados',						
<pre>subtitle = "Silhouette method",</pre>						
<pre>x = 'Número k de clústers',</pre>						
<pre>y = 'Anchura media de la silueta')</pre>						
print(silueta)						
ggsave(filename = "cluster_Silueta_k3cluster_02.pmg",						
<pre>plot = silueta, device = "png",</pre>						
<pre>path = "/lbo_doc/resultados/figuras")</pre>						
A A same number						
<pre># # Otra prueba</pre>						
t cluster para regiones						
nos df (- as data frame (nos vy = TDITE) and no omit (
nce out <- nce[[1]]						
for(i in seg len(nrow(nca)))/						
cle <- kmeane(nes df[-1] 3)						
nes out de stack(nes out						
pea_but <- stack (pea_but,						
	0.0					
rasterriomkiz(cis - cis(pca//)						
message("cluster", 1, "terminado")						
)						
rstPCA <- calc(pca_out, modal)						
nlayers (pca_out)						
plot(rstPCA)						
rstPCA <- reclassify(x = rstPCA, rcl = matriz)						
plot(rstPCA)						
# convertir a polígono						
rstPCAPoly <- rasterToPolygons(x = rstPCA, dissolve	= TR	UE)				
plot(rstPCAPoly, add = TRUE)						
<pre># convertir de sp (spatial) a sf (simple feature)</pre>						
rstPCAPoly <- st as sf(rstPCAPolv)						
st write (obj = rstPCAPoly.						
den = " /ubicacion/resultados/BChoolicono	mk	a" 4	rive		PKC"	
t shape recortado	- Aby	s, a	ve1		2110	
shape recortado						
rstrukroly <- st_read("/ibo_doc/resultados/PCA_SST	_com	ponen	tes/s	inp_cl	uster	_poli
broc(IsthCyholAbbcy 7 Gins)						
# extraer los datos del raster stack						
ext <- raster::extract(rs_crop, rstPCAPoly)						
<pre># extc <- raster::rasterToPoints(rs_crop)</pre>						

```
df_sst <-ext $>$
map(as_tibble) $>$
set_names(1:3) $>$
bind_rows(.id = 'region') $>$
pivot_longer(cols = -region, names_to = 'date', values_to = 'sst') $>$
dplyr::mutate(date = as.Date(paste0(date, '01'), 'sst_%Y.%m.%d'),
        region = case_when(
            region == 1 ~ 's1',
            region == 2 ~ 's2',
            region == 3 ~ 's3'),
        ) $>$
group_by(region,
        year = lubridate::year(date),
        month = lubridate::month(date)) $>$
summarise(sst = mean(sst, na.rm = TRUE)) $>$
dplyr::mutate(date = ymd(paste(year, month, '01'))) $>$ ungroup() $>$
dplyr::select(region, date, sst)
```

Anexo A4. Pronóstico de lluvia con modelos lm y nls.

```
# Modelos lineales v no lineales
 # Lee los datos procesados en un data frame (.Rdata)
 library(tidyverse)
 library (broom)
 library(grid)
 library(forecast)
 library(Rmisc)
 load('.../datos.RData')
 rm(list = setdiff(ls(), 'datos'))
 dat <- filter(datos, Gauge_name == "Tidjikja", pixel == "a3")</pre>
 name <- paste(unique(dat$Gauge_name)[1])</pre>
 # función para obtener los coeficintes de los modelos
 get_coef <- function(m, lbl = "m1") {coef(m) $>$
    set_names(paste0(lbl, ".b", 0:(length(.)-1))) $>$
   t() %>%
   as_tibble()}
 # función para control de valores negativos
 control_pcp <- function(x, y) {</pre>
  x <- if_else(x < 0, 0, x)
   x <- if_else(is.na(y), NA_real_, x)</pre>
   х
 # función para la participo de la serie de datos
 train_data <- function(x, col = "prcCdr", p = 0.7, ...) {</pre>
  cp <- caret::createDataPartition(y = na.omit(x[[col]]), p = p, list = F, ...)</pre>
   x[cp[,1],]
 # valores de inicio del modelo no lineal
 nls_personal <- function(formula, data,</pre>
                         start = expand_grid(a = seq(.1, .9, .1),
                                            b = seq(.6, 1.2, .1)),
                          ...){
 model <- NULL
  cnt < -1
  while(is.null(model) & cnt <= nrow(start)){</pre>
    sv <- start[cnt,]</pre>
   model <- tryCatch(</pre>
      nls(formula = formula, data = data, start = as.list(sv), ...),
      error = function(e) NULL
    )
   cnt <- cnt + 1
 3
 model
3
# modelo no lineal con numero max de iteraciones
nls_personal(prcCdr ~ a * exp(sst * b), data = dat, control = nls.control(1000))
# parámetros del modelo de regresión lineal, cuadrático y modelo no lineal
eqn = function(df = coef_df, method = "lm") {
 if(method == "lm"){
    eq <- substitute(italic(y) == a + b * italic(x),</pre>
                     list(a = format(df[[3]], digits = 2),
                          b = format(df[[4]], digits = 2)))
  }
  if(method == "poly"){
    eq <- substitute(italic(y) == b2 * italic(x) ^ 2 + b1 * italic(x) + b0,</pre>
                     list(b0 = format(df[[5]], digits = 2),
                          b1 = format(df[[6]], digits = 2),
                          b2 = format(df[[7]], digits = 2)))
  }
  if(method == "nls"){
    eq <- substitute(italic(y) == b0 * "e" ^ {b1 * italic(x)},</pre>
                     list(b0 = format(df[[8]], digits = 2),
                          b1 = format(df[[9]], digits = 2)))
 }
  as.expression(eq)
}
```

```
# indexación de los parámetros
f1 <- function(.x, dt = coef_df) {dt[[3]] + .x * dt[[4]]}</pre>
f2 <- function(.x, dt = coef_df) {dt[[5]] + .x * dt[[6]] + (.x ^ 2) * dt[[7]]}</pre>
f3 <- function(.x, dt = coef_df) {dt[[8]] * exp(.x * dt[[9]]) }</pre>
# mmedia movil para cdr y sst, puede ser entre 1 y máximo 3
dat0 <- dat %>%
  select(prcCdr, sst) %>%
  forecast::ma(x = ., order = 1, centre = T)  as.tibble()
names(dat0) <- c('prcCdr', 'sst')</pre>
dat[, c("prcCdr", "sst")] <- dat0</pre>
# datos anidados: datos training, testing, parámetros y fórmulas
tmp <- dat %>%
  group_by(Gauge_name, pixel) %>%
  mutate(prcCdr = lag(prcCdr, 8)) %>%
  group nest() %>% # anidar -> crear un nido...
  mutate(train = map(data, train_data),
         test = map2(data, train, anti_join, by = c("X", "Y", "date")),
         modelo1 = map(train, ~lm(prcCdr ~ sst, data = .)),
         modelo2 = map(train, ~lm(prcCdr ~ poly(sst, 2, raw = TRUE), data = .)),
         modelo3 = map(train, nls_personal, formula = prcCdr ~ a * exp(sst * b),
                                           control = nls.control(1000)),
         coef1 = map(modelo1, get_coef, lbl = "lm"),
         coef2 = map(modelo2, get_coef, lbl = "poly"),
         coef3 = map(modelo3, get_coef, lbl = "nls"),
         pred1 = map2(modelo1, test, ~predict(object = .x, newdata = .y)),
         pred2 = map2(modelo2, test, ~predict(object = .x, newdata = .y)),
         pred3 = map2(modelo3, test, ~predict(object = .x, newdata = .y)))
# desanidar/desagrupar los coeficintes
coef_df <- tmp %>%
  unnest(c(coef1:coef3)) %>%
  select(-(data:modelo3), -(pred1:pred3))
# desagrupar los datos de entrenamiento
train df <- tmp %>%
 unnest(c(train)) %>%
  select(-data, -(modelo1:modelo3), -(coef1:coef3), -(pred1:pred3))
# desagrupar los datos de testing
pred_df <- tmp %>%
 unnest(c(test, pred1:pred3)) %>%
  select(-data, -train, -(modelo1:modelo3), -(coef1:coef3))
# definir las posisiones de los elementos para los plots de salida
grob <- grid::grobTree(</pre>
  textGrob(eqn(method = "lm"),
           x = 0.05, y = 0.9, hjust = 0,
           gp = gpar(col = "red", fontsize = 11.0, fontfamily = "Times",
                     fontface = "plain")),
  textGrob(eqn(method = "poly"),
           x = 0.05, y = 0.85, hjust = 0,
           gp = gpar(col = "green", fontsize = 11.0, fontfamily = "Times",
                     fontface = "plain")),
  textGrob(eqn(method = "nls"),
           x = 0.05, y = 0.80, hjust = 0,
           gp = gpar(col = "blue", fontsize = 11.0, fontfamily = "Times",
                     fontface = "plain")),
 textGrob(paste('Estación:',name),
           x = 0.05, y = 0.95, hjust = 0,
           gp = gpar(col = "black", fontsize = 11.0, fontfamily = "Times",
                     fontface = "plain"))
)
```

guarda los resultados

```
ggsave(filename = paste0(name,'_a3_MedMovil2.png'), plot = p,
width = 8, height = 6, path = '../Directorio/',
device = 'png', dpi = 300)
```

Anexo B. Tablas complementarias

Datos	Fuente	Acceso	Extensión
SST	National Centers for Environmental Information (NCEI), NASA	https://cds.climate.copernicus.eu/cdsapp#!/ yourrequests?tab=form	*.nc
SST	National Data Buoy Center	https://www.ndbc.noaa.gov/	*.gz
MSLP	ECMWF/ERA5	https://cds.climate.copernicus.eu/cdsapp#!/ dataset/reanalysis-era5-single-levels-monthly- means?tab=overview	*.nc
Índices ENSO 3.4	Climate Data Guide, NCAR/UCAR	https://climatedataguide.ucar.edu/climate-data/ nino-sst-indices-nino-12-3-34-4-oni-and-tni	*.CSV
RHUM	ECMWF/ERA5	https://cds.climate.copernicus.eu/cdsapp#!/ dataset/reanalysis-era5-pressure-levels-monthly- means?tab=form	*.nc
Ta_2m	ECMWF/ERA5	https://cds.climate.copernicus.eu/cdsapp#!/datas et/reanalysis-era5-single-levels-monthly-means? tab=overview.	*.nc
Prc	The Center for Hydrometeorology and Remote Sensing	http://chrsdata.eng.uci.edu/	*.Tif
Observ ados: Prc, Ta	Servicios meteorológicos de los países del Sahel.	-	*.xls
MNA	International Centre for Tropical Agriculture (CIAT)	http://srtm.csi.cgiar.org/	*.GeoTif
Cobert ura	EarthExplorer, NASA	https://earthexplorer.usgs.gov/	*.Tiff
Clima	ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE)	https://data.humdata.org/dataset/climatic- zones-in-west-africa	*.shp

Anexo B1. Propiedades de los datos de entrada (complemento de la Tabla 4-1).

Anexo B2. Coeficientes para el pronóstico de lluvia en 725 píxeles que conforman las cuencas Bani y Senegal en la estación Bakel. Los coeficientes son con el modelo polinomial (mejor rendimiento).

#	Х	Y	b0	b1	b2
1	-12.625	14.875	2092.29439473781	-211.167809738462	5.32008633254954
2	-7.875	12.375	2648.87662752337	-274.594055231083	7.11479073026995
3	-7.875	12.625	2675.32741255991	-275.86671459055	7.10911157370849
4	-12.625	14.125	2467.05685283962	-250.638848215605	6.35764271739914
5	-11.375	14.375	3096.92481124825	-309.706145703087	7.73010570694071
6	-12.125	12.625	2920.5989601127	-306.060281251071	8.00816028981537
7	-11.375	16.625	1382.59314325855	-136.996848505378	3.38647814085242
8	-9.375	12.875	3040.68278147894	-313.518520028081	8.07602717934871
9	-5.625	9.375	-528.403201303594	26.9172340785554	0.075307649766155
10	-12.375	11.375	979.789597960715	-140.628217490423	4.65104328262511
11	-12.125	10.375	-1742.33256090965	115.447626362753	-1.29568855770396
12	-13.875	16.125	1500.4232415311	-148.800528157151	3.68193859139266
13	-7.375	16.625	1651.3748303477	-161.074967767746	3.91423717288246
14	-9.625	15.125	2788.66039058851	-275.478074005538	6.78732489638678
15	-7.625	9.625	538.955161074816	-82.8004868669453	2.88765838116295
16	-12.375	13.375	2898.55460136136	-296.339157788657	7.56631856711154
17	-12.375	14.125	2634.79923022555	-266.578395607091	6.73355014460345
18	-12.375	14.375	2629.31530668622	-264.312048483697	6.63193263625081
19	-12.375	14.625	2540.88595137317	-254.691039871647	6.37167110754913
20	-12.375	14.875	2298.02005979618	-230.202415597362	5.75499647224892
21	-12.125	10.625	-929.976147459571	40.4624761915341	0.408648470355413
22	-12.125	10.875	-565.438488493903	7.66315909730039	1.12638351933933
23	-12.125	11.125	403.653461461986	-83.4585004932767	3.24177977385628
24	-12.125	11.375	1441.68981244989	-180.969823234754	5.50418393583851
25	-12.125	13.375	2733.92571095356	-281.243293501316	7.22464419074121
26	-12.125	13.625	2923.12157841055	-296.908090080973	7.52985571822486
27	-12.125	13.875	2839.3398184797	-288.168011861477	7.3020853652665
28	-12.125	14.125	2629.12570588127	-266.575700634197	6.74841337351836
29	-12.125	14.375	2846.41667571729	-285.490736706806	7.14677203180954
30	-12.125	14.625	2627.27824090412	-262.695032926624	6.55476535816236
31	-12.125	14.875	2298.70788387311	-230.566410690478	5.77179618489644
32	-12.125	15.125	2232.57232809381	-223.562418819583	5.58682237937877
33	-11.875	10.625	-445.397629477297	-2.75467126134733	1.35117506819425
34	-11.875	10.875	97.869666199696	-53.3604206800324	2.50595109397476
35	-11.875	11.125	440.783570882115	-84.5297909256769	3.19772088052077
36	-11.875	11.375	1344.39764989456	-168.233025854386	5.10470982537782
37	-11.875	12.375	2941.67072517013	-312.423431626207	8.28064589736759
38	-11.875	13.125	3047.0430122812	-312.635256025907	8.01227610679233
39	-11.875	13.375	2999.18708872176	-304.980759172999	7.74513108399587

#	Х	Y	b0	b1	b2
40	-11.875	13.625	3021.33347204716	-306.593336675887	7.76825034515206
41	-11.875	13.875	2900.90483646951	-293.935141971554	7.43564528136839
42	-11.875	14.125	2778.91624646085	-280.900015240514	7.0887428604243
43	-11.875	14.375	2643.84288067977	-266.051341677539	6.68360882298208
44	-11.875	14.625	2572.33202056584	-257.754801337063	6.44588343834363
45	-11.875	14.875	2578.83283709511	-257.212232637763	6.40105630078776
46	-11.875	15.125	2476.88885845254	-246.621509984545	6.12628330528252
47	-11.875	15.375	2267.35118706497	-225.727548330663	5.60596943590064
48	-11.875	16.875	1393.93489066055	-137.73562134655	3.39417023895073
49	-11.875	17.125	1131.6430716103	-112.164938047991	2.77385333296809
50	-11.625	10.625	182.825932717195	-59.0372040446581	2.5800317213159
51	-11.625	10.875	179.351802718165	-57.4711896022228	2.50048634757422
52	-11.625	11.125	1097.53445352634	-142.392006876206	4.43413983786534
53	-11.625	11.375	1765.60274924517	-205.017684533265	5.88485985833658
54	-11.625	11.875	2588.44652753274	-282.28847786167	7.67179727643847
55	-11.625	12.125	3099.91724524728	-328.1470058478	8.67322928173282
56	-11.625	12.375	2906.83792500954	-307.745892903823	8.13334934431915
57	-11.625	12.625	3088.85373216724	-321.455306644638	8.35529453051397
58	-11.625	12.875	3151.5812942408	-326.222161856221	8.43351106186019
59	-11.625	13.125	2973.14296521997	-305.804931811408	7.85558289294964
60	-11.625	13.375	3239.89108006908	-329.207809856369	8.35278939261645
61	-11.625	13.625	2903.45978890003	-296.018727055934	7.53659780926704
62	-11.625	13.875	2887.53011110046	-292.97925329011	7.42216382444556
63	-11.625	14.125	2892.22600255237	-291.672969155885	7.34277428655199
64	-11.625	14.375	2659.66364190506	-268.376695703577	6.76106685856832
65	-11.625	14.625	2776.6180716538	-277.639714096371	6.92828274573308
66	-11.625	14.875	2657.10100227572	-265.047709039383	6.59722622284944
67	-11.625	15.125	2509.536015688	-249.635648033433	6.19489266948809
68	-11.625	15.375	2100.18112151927	-209.863411739423	5.23270359754618
69	-11.625	15.625	2026.0050026494	-202.104174445842	5.03048707133591
70	-11.625	15.875	1889.04341233511	-187.56909160768	4.646319160261
71	-11.625	16.125	1696.56517050867	-168.3165313013	4.16589803422158
72	-11.625	16.375	1475.10365136741	-146.602373361465	3.63570781734331
73	-11.625	16.625	1250.97026735679	-124.66860354823	3.10018402420298
74	-11.625	16.875	1278.23498691588	-126.390038544314	3.11701062456969
75	-11.625	17.125	1164.18265184569	-115.123868634481	2.8399363206871
76	-11.625	17.375	1015.54701663634	-100.468383584734	2.4801885925842
77	-11.375	10.625	111.425847230488	-51.0830426695528	2.35604846325288
78	-11.375	10.875	539.308375604325	-90.7059614616956	3.25773561286838
79	-11.375	11.125	1200.89707372287	-151.84572317953	4.64726354410876
80	-11.375	11.375	1343.22526337396	-165.044154364911	4.94293603416272
81	-11.375	11.625	1909.26470477429	-219.035523598667	6.21950776214889
82	-11.375	11.875	2618.05744734762	-285.057278707371	7.73586792234402
83	-11.375	12.125	2818.5872146255	-300.981539193207	8.0211180821783
84	-11.375	12.375	2791.07968365506	-297.619810497793	7.91789719304505
85	-11.375	12.625	2963.00138030919	-310.647310624503	8.13265172099717

#	Х	Y	b0	b1	b2
86	-11.375	12.875	3094.64615799891	-320.65463471565	8.29738413649624
87	-11.375	13.125	2963.67537495021	-305.216352616482	7.85030935470419
88	-11.375	13.375	3068.16670423802	-313.158979644082	7.9817642759498
89	-11.375	13.625	3069.39335782624	-311.446495021519	7.89097817419573
90	-11.375	13.875	2980.59576420404	-302.025897784975	7.64150147490763
91	-11.375	14.125	3045.31145155647	-306.423772050237	7.69642418705061
92	-11.375	14.625	2753.22220568327	-275.626517034545	6.88639870577469
93	-11.375	14.875	2462.33618514358	-246.694897324805	6.16819961333551
94	-11.375	15.125	2713.09799975499	-268.912120593361	6.64840980824364
95	-11.375	15.375	2279.74783325971	-226.832604420305	5.63091903459598
96	-11.375	15.625	2281.16844121612	-226.298400945485	5.59979322312304
97	-11.375	15.875	1901.86292657835	-188.741957408378	4.67309071227359
98	-11.375	16.125	1773.07648231799	-175.69793119891	4.34252813710974
99	-11.375	16.375	1533.06272555936	-152.021889494904	3.7606055800875
100	-11.375	16.875	1288.21250374721	-127.458506345257	3.14564503840101
101	-11.375	17.125	1142.75734315642	-113.125546880285	2.7937257535199
102	-11.375	17.375	964.175532528013	-95.3489867769186	2.35236162120441
103	-11.375	17.625	966.079594086394	-95.1302192982639	2.3366740378766
104	-11.375	17.875	744.775903125082	-73.8189289872083	1.82576612043202
105	-11.125	11.125	1102.62751713018	-140.766008133073	4.33497486603047
106	-11.125	11.375	1638.35945262374	-191.608496603469	5.52704466784446
107	-11.125	11.625	1762.41695024761	-203.721532458427	5.82030927678204
108	-11.125	11.875	2756.30021881145	-296.753521109484	7.97079168837279
109	-11.125	12.125	2531.79158491065	-273.55413952839	7.36879293780238
110	-11.125	12.375	2726.21480651836	-290.692277082134	7.73323201063607
111	-11.125	12.625	2770.55418940815	-291.588027322769	7.66206168240385
112	-11.125	12.875	3076.68394057039	-318.048381552061	8.21183851196001
113	-11.125	13.125	3172.77182213819	-324.226362857642	8.27618616520993
114	-11.125	13.375	3282.17195653009	-332.616489529509	8.41752739774322
115	-11.125	13.625	3086.1113704002	-313.33876629535	7.94387316105398
116	-11.125	13.875	3162.60372206097	-318.317112541662	7.99831531700055
117	-11.125	14.125	3069.14680345463	-308.825766077417	7.75702771712997
118	-11.125	14.375	3051.08177811776	-305.541163813279	7.63667102333602
119	-11.125	14.625	2807.04477456204	-280.23035532186	6.98114253362592
120	-11.125	14.875	2626.2306456219	-261.852402692571	6.5143154735961
121	-11.125	15.125	2641.56188595017	-262.595393230662	6.51228848881457
122	-11.125	15.375	2416.01697857617	-239.520781846529	5.9237755456224
123	-11.125	15.625	2137.94380280641	-212.56778030033	5.27273734774719
124	-11.125	15.875	1985.74022265521	-197.332324734903	4.89180040331108
125	-11.125	16.125	1789.56486645703	-177.224064215661	4.37855556073264
126	-11.125	16.375	1709.37799173908	-168.825978809663	4.15935268049456
127	-11.125	16.625	1609.91277844553	-158.266431055339	3.87921340514345
128	-11.125	16.875	1353.88096161624	-133.496423497913	3.28244501319595
129	-11.125	17.125	1097.38310917521	-108.513655179652	2.67687809410565
130	-11.125	17.375	1002.88623005002	-98.7446877081695	2.42474369054143
131	-11.125	17.625	1060.91792189643	-103.875458046225	2.53554059184047

#	Х	Y	b0	b1	b2
132	-11.125	17.875	633.790780741065	-63.1488147223671	1.57116940430591
133	-11.125	18.125	703.861723947549	-69.2868654383137	1.70193207990153
134	-10.875	11.625	2252.73080267198	-249.350010850994	6.86683885353501
135	-10.875	11.875	2152.01968833558	-238.051412308109	6.54926473203579
136	-10.875	12.125	2575.32720670351	-277.269297570716	7.44570117385902
137	-10.875	12.375	2743.57416236254	-291.444381396902	7.72726370051651
138	-10.875	12.625	2962.22396402018	-308.951929533968	8.04923761862379
139	-10.875	12.875	2866.85037178132	-299.446504752369	7.81067844904308
140	-10.875	13.125	3095.35320807323	-317.878856667227	8.15293047577107
141	-10.875	13.375	3377.44251060454	-342.250062668434	8.65987942055825
142	-10.875	13.625	2984.64927283485	-304.265268301394	7.74536406513855
143	-10.875	13.875	3177.1172188967	-320.533217854056	8.07333615938001
144	-10.875	14.125	3189.9547517077	-320.405879728142	8.03322189750884
145	-10.875	14.375	3009.26323867038	-302.379233973187	7.58426868240317
146	-10.875	14.625	2998.64834979574	-298.61553409487	7.41951723917755
147	-10.875	14.875	2424.99704286812	-243.625933584274	6.10914737506935
148	-10.875	15.125	2589.32311563273	-257.454092339962	6.38631850223787
149	-10.875	15.375	2342.00970970155	-232.632919557359	5.76460465020723
150	-10.875	15.625	2078.53114573335	-206.654570420586	5.1259950570371
151	-10.875	15.875	1982.03084959696	-196.809506177491	4.8755478253795
152	-10.875	16.125	1950.58668102534	-192.424518329834	4.73472011275828
153	-10.875	16.375	1506.2164455205	-149.510016244564	3.70259565260694
154	-10.875	16.625	1411.32313227666	-140.174514880697	3.47310807506301
155	-10.875	16.875	1373.50093508773	-135.699850869902	3.34453257823358
156	-10.875	17.125	1190.45953449145	-117.270640048882	2.88071073911067
157	-10.875	17.375	1056.14675467922	-103.862854088305	2.54701502799355
158	-10.875	17.625	857.733861058585	-84.4433477414182	2.0741902607561
159	-10.875	17.875	691.69450092798	-68.2585008552408	1.68095161558105
160	-10.875	18.125	560.387408016488	-55.6491991162024	1.37988054628575
161	-10.625	11.625	2000.85960538424	-225.311419834642	6.29607506216
162	-10.625	11.875	2194.16730498793	-242.176079306854	6.65172297608032
163	-10.625	12.125	2650.34238204627	-284.911580212434	7.63862304061402
164	-10.625	12.375	2740.06965945228	-291.408229852926	7.73361613233925
165	-10.625	12.625	2899.09807370542	-303.430398499641	7.93202170406578
166	-10.625	12.875	2913.37902467724	-302.728958616027	7.85701552133817
167	-10.625	13.125	3098.88402173706	-318.196026319454	8.16059907976838
168	-10.625	13.375	3149.35991705657	-321.225862709766	8.18199201993248
169	-10.625	13.625	2993.57832595281	-304.765002951624	7.74691938462123
170	-10.625	13.875	3241.34186018278	-326.857121193342	8.22874884084592
171	-10.625	14.125	3242.4643904266	-324.983224159515	8.13019230570275
172	-10.625	14.375	3164.33260688334	-316.279239182135	7.88880988993248
173	-10.625	14.625	2721.01705030594	-273.009860637673	6.83642153508121
174	-10.625	14.875	2/22.21107885832	-271.221978249655	6.74319965595137
175	-10.625	15.125	2562.23052978116	-254.806100874216	6.32192156026325
176	-10.625	15.375	2357.11473294841	-234.157249524463	5.8028045916581
177	-10.625	15.625	2299.71809363628	-227.985642298604	5.63691389981469

#	Х	Y	b0	b1	b2
178	-10.625	15.875	2228.69531484319	-219.579407342249	5.39356898817135
179	-10.625	16.125	1809.98897916091	-179.48364625681	4.43939404854295
180	-10.625	16.375	1531.82960436257	-151.979736755706	3.76196993235212
181	-10.625	16.625	1596.97572112523	-157.735648116997	3.88598756268917
182	-10.625	16.875	1301.50552709022	-128.410317954441	3.15979515676735
183	-10.625	17.125	1211.82483474586	-119.335846931947	2.93007731935344
184	-10.625	17.375	943.653452568161	-93.3067978166461	2.30172126945436
185	-10.625	17.625	969.146193877528	-95.0544594268642	2.32428766562857
186	-10.625	17.875	768.669865842207	-75.3859468178351	1.84413377903383
187	-10.625	18.125	602.572639804026	-59.5096607918899	1.46669679201618
188	-10.625	18.375	624.009515877471	-61.3036869698758	1.50281952970665
189	-10.625	18.625	466.251750243433	-45.8653009455771	1.12634311275883
190	-10.625	18.875	398.402014764829	-39.2330045021145	0.964725595225615
191	-10.375	11.875	2376.94085454455	-260.076399698445	7.08738321949455
192	-10.375	12.125	2509.0853537143	-270.095518797169	7.25148853817352
193	-10.375	12.375	2592.3974331798	-276.533246194695	7.35984664325129
194	-10.375	12.625	2736.27235784593	-287.613345223524	7.54870753958238
195	-10.375	12.875	2927.03649670031	-303.342970924554	7.85271291819288
196	-10.375	13.125	2999.94009078982	-308.362064844118	7.91565434047361
197	-10.375	13.375	3357.54804846109	-340.402125523377	8.61819354785002
198	-10.375	13.625	2964.1508019688	-302.058709161744	7.68677366358384
199	-10.375	13.875	3336.69811142721	-334.884698489928	8.39027945955993
200	-10.375	14.125	3294.54420224066	-329.981537662056	8.24875202315876
201	-10.375	14.375	3028.64512354903	-303.924690869153	7.61232452936409
202	-10.375	14.625	2741.30089466861	-274.649464057833	6.86820511207192
203	-10.375	14.875	2564.41348482275	-256.071438274926	6.38105021741922
204	-10.375	15.125	2570.77236523027	-256.224270385787	6.37199058066994
205	-10.375	15.375	2512.70302138305	-248.580245452131	6.13343855022104
206	-10.375	15.625	2167.79865354332	-215.564338518536	5.3472082758265
207	-10.375	15.875	2098.92674664335	-207.592039807308	5.12020390586561
208	-10.375	16.125	2037.2780013891	-200.491044405315	4.91894310079377
209	-10.375	16.375	1750.72470746929	-172.407151074953	4.23284962467523
210	-10.375	16.625	1688.65118197847	-166.275797906677	4.08294459799701
211	-10.375	16.875	1440.9024724839	-141.779482638527	3.47920366000003
212	-10.375	17.125	1216.67703001172	-119.537390931637	2.92854189105003
213	-10.375	17.375	973.195285651597	-95.7425934460324	2.34905658731323
214	-10.375	17.625	938.776563887432	-92.1418424147104	2.25493116602842
215	-10.375	17.875	727.355282304372	-71.6328578976415	1.75989506944158
216	-10.375	18.125	579.968064323544	-57.17050323365	1.40611230376556
217	-10.375	18.375	612.351967318168	-60.1778153382814	1.47502855833493
218	-10.375	18.625	518.932515040075	-50.8169978376777	1.24183265223278
219	-10.375	18.875	400.521532235019	-39.1808465108916	0.956375637108182
220	-10.125	11.875	2161.36734764858	-237.408440589602	6.49365326861278
221	-10.125	12.125	2301.35153913428	-250.252178016995	6.78068109650113
222	-10.125	12.375	2603.13727344982	-276.457946949947	7.32878163547513
223	-10.125	12.625	2838.7526105313	-296.529533698732	7.73605948342999

#	Х	Y	b0	b1	b2
224	-10.125	12.875	3201.03476602232	-328.922968493505	8.44326245820113
225	-10.125	13.125	3209.20544659662	-328.616511321449	8.40523402462692
226	-10.125	13.375	3335.60212298209	-338.523809045901	8.57988999219709
227	-10.125	13.625	3250.39975085834	-328.274644498019	8.2773112277191
228	-10.125	13.875	3157.26079532069	-318.48442202411	8.02063082677747
229	-10.125	14.125	3130.09671907045	-313.413877690639	7.83223774491036
230	-10.125	14.375	3036.54178533344	-304.191137141782	7.60576090256016
231	-10.125	14.625	2803.60484820362	-281.053009494549	7.03182214107826
232	-10.125	14.875	2628.48822549375	-262.353080736046	6.53432550567936
233	-10.125	15.125	2607.8633385098	-259.449539167274	6.44002131585678
234	-10.125	15.375	2656.49171172434	-262.321942980737	6.46074013178998
235	-10.125	15.625	2201.12747040251	-217.972717542037	5.38346504551365
236	-10.125	15.875	1878.34687495213	-186.611906852589	4.62537937186748
237	-10.125	16.125	1804.00498528653	-178.214898428592	4.39070820389257
238	-10.125	16.375	1725.85585149789	-169.730550533946	4.16138979880153
239	-10.125	16.625	1328.73384908108	-131.836705339249	3.26378210494708
240	-10.125	16.875	1239.04318140485	-121.988586596228	2.99548931940317
241	-10.125	17.125	1144.10709195443	-112.584077083469	2.76292572410415
242	-10.125	17.375	1083.75704632374	-106.520045584809	2.61011747151996
243	-10.125	17.625	906.337799035061	-88.7968494693939	2.16896569150341
244	-10.125	17.875	791.490171373932	-77.3987087075539	1.88687204725965
245	-10.125	18.125	669.040911906882	-65.4419067626655	1.59625873791684
246	-10.125	18.375	570.819640273669	-56.1532274762537	1.37753363199516
247	-10.125	18.625	482.855250447761	-47.3747131639682	1.15970107630883
248	-10.125	18.875	354.769891194726	-35.1474451698867	0.869578272146239
249	-10.125	19.125	232.219082164874	-23.19581867989	0.579308020102434
250	-9.875	11.875	2194.80469532254	-240.090003122102	6.54441444112997
251	-9.875	12.125	2612.01271068097	-277.860381082662	7.37882414619507
252	-9.875	12.375	2837.34830888031	-297.802480558814	7.80780007813074
253	-9.875	12.625	2786.18793348029	-291.631382011719	7.62305413375548
254	-9.875	12.875	3074.2283197931	-317.110253536149	8.17184029153344
255	-9.875	13.125	3153.4729188363	-323.245753911414	8.27695149223738
256	-9.875	13.375	3313.12642873978	-336.110652497473	8.51455003262246
257	-9.875	13.625	3207.47340438694	-324.148103773229	8.17915375338747
258	-9.875	13.875	3183.44032774449	-319.907247779484	8.02511534163232
259	-9.875	14.125	3174.6631783987	-318.180337688949	7.95943684581053
260	-9.875	14.375	2808.0928415258	-282.215971366972	7.08045911046965
261	-9.875	14.625	2610.87525824936	-261.855279759325	6.55485306102214
262	-9.875	14.875	2622.95885247653	-262.091453849267	6.53562196145614
263	-9.875	15.125	2544.4/340725183	-253.36/326388487	6.2948/193377961
264	-9.875	15.375	2434./8203493356	-241.128642090837	5.95590812934492
265	-9.875	15.625	2195.16132372805	-217.405845985325	5.3/010/43/4566
266	-9.875	15.8/5	18/3.85445928582	-186.0083153/991	4.60596370640138
267	-9.875	16.125	1980.57574752462	-194.671436635415	4.76940995673155
268	-9.875	16.3/5	1617.08150145466	-159.498/63/1449	3.92306587882141
269	-9.875	16.625	1334.93349671372	-132.115614836218	3.26184558985313

#	Х	Y	b0	b1	b2
270	-9.875	16.875	1504.66877804646	-147.456232502899	3.60260727695799
271	-9.875	17.125	1167.74177470007	-114.665791344059	2.80762061010916
272	-9.875	17.375	1015.28944686844	-99.8650327376868	2.44920739496878
273	-9.875	17.625	977.771736887934	-95.3525540914069	2.3181717218936
274	-9.875	17.875	764.204252084705	-74.6194930251401	1.81620548724836
275	-9.875	18.125	652.392053237995	-63.8415996895571	1.55812577456781
276	-9.875	18.375	589.887887058679	-57.6916458941702	1.40681351257335
277	-9.875	18.625	459.940897526673	-45.2131716762827	1.10874725155411
278	-9.875	18.875	381.483260591459	-37.5581337946146	0.922941652146672
279	-9.875	19.125	303.323871812666	-29.9949341343192	0.740697618387253
280	-9.875	19.375	221.007707453923	-22.0096001902036	0.548152420942694
281	-9.875	19.625	211.905111843527	-20.9887560039324	0.519576009085147
282	-9.625	11.625	2451.84773982408	-263.608107290019	7.07543765457563
283	-9.625	11.875	2318.04492713331	-250.940838822119	6.7767937690105
284	-9.625	12.125	2688.9941542264	-284.042489090549	7.49422573363891
285	-9.625	12.375	2594.72896150005	-274.876939418714	7.26965132060446
286	-9.625	12.625	2617.03011465096	-275.399820357888	7.23723692158869
287	-9.625	12.875	2994.15245762411	-309.396849527307	7.98689025243081
288	-9.625	13.125	3094.73380209734	-316.594940029889	8.09049051451082
289	-9.625	13.375	3252.98037210752	-329.85302368339	8.35374200142518
290	-9.625	13.625	3168.44923831011	-320.180344054083	8.07963218843966
291	-9.625	13.875	3041.7363762103	-306.586124859121	7.71509330965028
292	-9.625	14.125	2955.20426628412	-296.775890128744	7.44017487005406
293	-9.625	14.375	3140.22630259033	-313.043355577051	7.78642821880973
294	-9.625	14.625	2658.44919785864	-265.570613344341	6.62090777063579
295	-9.625	14.875	2808.37306878869	-278.993098958569	6.91449911206896
296	-9.625	15.375	2548.57866628708	-251.39467332227	6.18334490862665
297	-9.625	15.625	2254.48976189571	-222.667259183046	5.48386488394756
298	-9.625	15.875	1934.81490327296	-191.337766606395	4.71937106740331
299	-9.625	16.125	1980.39958993654	-194.326612352515	4.75238919109182
300	-9.625	16.375	1661.17180490109	-163.627493002866	4.01885474203272
301	-9.625	16.625	1468.42079506551	-144.223977575901	3.5324009721956
302	-9.625	16.875	1246.6140258968	-122.641383472874	3.00909052735408
303	-9.625	17.125	1165.73570397335	-114.319424911045	2.79539004182646
304	-9.625	17.375	1090.08786466322	-106.505245175401	2.59383606120855
305	-9.625	17.625	1028.15394825906	-100.139544880906	2.43030530523923
306	-9.625	17.875	742.171775648034	-72.4822745355229	1.76478513107823
307	-9.625	18.125	656.693264929068	-64.3350242925402	1.57156661503604
308	-9.625	18.375	564.271681792733	-55.2952165444204	1.35130580455239
309	-9.625	18.625	420.094545027871	-41.4064448286807	1.01842489805556
310	-9.625	18.875	382.901655509572	-37.6119411192424	0.921776963105198
311	-9.625	19.125	302.2840749823	-29.6059416882714	0.723941818204376
312	-9.625	19.375	226.575692532016	-22.5191098857019	0.559320430821261
313	-9.625	19.625	199.0143867699	-19.6202267767165	0.483568191672047
314	-9.625	19.875	147.071399752962	-14.7286529763839	0.369573905974426
315	-9.375	11.625	2103.47064898929	-229.498689137393	6.24209793580427

#	Х	Y	b0	b1	b2
316	-9.375	11.875	2101.40854392133	-229.02868145183	6.22166790647192
317	-9.375	12.125	2449.38331936043	-260.989297150463	6.94314399801493
318	-9.375	12.375	2669.70585338549	-281.569117209249	7.41685923389216
319	-9.375	12.625	2966.3510347953	-307.515696251314	7.96591756274848
320	-9.375	13.125	3103.46373400462	-317.018076084993	8.09041170225234
321	-9.375	13.375	3286.08526101583	-332.778493195406	8.41625831628969
322	-9.375	13.625	3344.90727260887	-336.328165993911	8.44327304979009
323	-9.375	13.875	3150.24042463786	-316.321555953779	7.92848543362779
324	-9.375	14.125	2931.11023129802	-293.88658872655	7.3548582129581
325	-9.375	14.375	2922.66023033798	-291.455503676219	7.25386976162935
326	-9.375	14.625	2858.71481769405	-283.951800570601	7.03639493212261
327	-9.375	14.875	2834.49746727148	-280.440285365811	6.9205372977953
328	-9.375	15.125	2676.55441171737	-264.215281101241	6.5049751871835
329	-9.375	15.375	2362.14984013104	-234.015237235254	5.78254595668591
330	-9.375	15.625	2126.2673993448	-210.725324207227	5.20951423990656
331	-9.375	15.875	2006.98955051427	-198.381212887269	4.89051487940453
332	-9.375	16.125	1726.35756563284	-170.080973195874	4.17827608891042
333	-9.375	16.375	1585.5658937575	-156.428752173102	3.84806787390347
334	-9.375	16.625	1583.24910510606	-154.989627749712	3.78197318783845
335	-9.375	16.875	1276.74238225894	-125.380808240015	3.07037789723085
336	-9.375	17.125	1299.63447657859	-126.858364684386	3.08603296967931
337	-9.375	17.375	1012.347757069	-99.0239286490265	2.41462327944282
338	-9.375	17.625	1007.54979969042	-98.1434857303664	2.38178841545642
339	-9.375	17.875	734.734580480285	-71.8485764776962	1.75120384336348
340	-9.375	18.125	635.324697647705	-61.8782459306678	1.50203212200256
341	-9.375	18.375	541.9778746681	-53.037926049054	1.29418536278586
342	-9.375	18.625	440.116877416185	-43.1098859361998	1.05317933960421
343	-9.375	18.875	294.230969023376	-29.1820866536645	0.722826835287988
344	-9.375	19.125	317.14125399624	-31.1193718318155	0.762062173906874
345	-9.375	19.375	208.473898102087	-20.9011509288685	0.523841827210099
346	-9.375	19.625	176.204878829531	-17.5259341079318	0.436354821215262
347	-9.375	19.875	151.678984479122	-15.0556612252589	0.3/452//06119218
348	-9.125	11.875	2414.42002327569	-257.253072885245	6.84482339215602
349	-9.125	12.125	2691.24151738855	-284.002549787122	7.48595143244222
350	-9.125	12.3/5	2/34.68/83249014	-28/.901339192213	/.56941885983069
351	-9.125	12.625	302/.9921530242/	-313.885851918665	8.13030815594652
352	-9.125	12.8/5	3399.821/8550/66	-346.38/662324891	8.81/08466/550/
353	-9.125	13.125	3402.1069/624/32	-343.852681445306	8.68005856845292
354	-9.125	13.3/5	3326.6659982/383	-335.611004038/69	8.4563493610/0/
355	-9.125	13.625	3253,813839/40//	-32/.54228406///	0.23235549978356
356	-9.125	13.0/5	3207.33213325/12	-32/.043491611322	0.10913590410134
35/	-9.125	14.125	2033.0//00532//0	-300.02105//20190	/.003/30045/8268
350	-9.125	14.3/5	2000.5202/122030	-203.314330044311	7 2022022040005
359	-9.125	14.025	232/.//341/20025	-290./22005943214	/.2022033040005 6 E10E606E4E92E7
30U 2C1	-9.125	14.0/5 15 125	2040.524054/4/40	-202.33/04203030	0.0190000040025/
301	-9.125	15.125	2499./2491//1693	-24/.030/35391566	0.119010430/5811

#	Х	Y	b0	b1	b2
362	-9.125	15.375	2473.38212865911	-243.834730210955	5.99325104854109
363	-9.125	15.625	2365.09918322779	-232.730941154379	5.70894706741809
364	-9.125	15.875	1948.85774276205	-192.28105706337	4.730575644598
365	-9.125	16.125	1766.94342215866	-173.785667485865	4.26119308285732
366	-9.125	16.375	1661.36911839121	-163.542988945965	4.01387705668084
367	-9.125	16.625	1744.3463642852	-170.590071086791	4.15780700741601
368	-9.125	16.875	1351.65682049898	-132.596931003597	3.24204415376556
369	-9.125	17.125	1128.68020963711	-110.894423002139	2.71653581070391
370	-9.125	17.375	1131.86806466851	-110.373189421375	2.68170957841622
371	-9.125	17.625	1069.31453390724	-103.880687367831	2.51377714197736
372	-9.125	17.875	804.001779483301	-78.3043914556328	1.90005280231545
373	-9.125	18.125	678.700787089204	-66.0494479412909	1.60171206770469
374	-9.125	18.375	558.516257936916	-54.6187482370896	1.33192932936857
375	-9.125	18.625	439.116602358462	-43.1283500639496	1.05682108474482
376	-9.125	18.875	290.52093837293	-28.8195789610912	0.71406712783624
377	-9.125	19.125	250.644545652087	-24.8473704280001	0.615410907430907
378	-9.125	19.375	231.864348411266	-22.7537356765759	0.558063354135078
379	-9.125	19.625	200.792644200857	-19.8001915496003	0.487999813995473
380	-9.125	19.875	145.344090253497	-14.3026259976289	0.352374504917986
381	-8.875	11.875	2454.99803350229	-260.361269380485	6.89655379878804
382	-8.875	12.125	2770.37257442338	-290.227656978269	7.59861945604725
383	-8.875	12.375	2705.25871315872	-284.447809307674	7.47133419028273
384	-8.875	12.625	2568.16461190639	-269.309239939151	7.05338802342246
385	-8.875	12.875	3205.84925618147	-327.153748711745	8.34100648483277
386	-8.875	13.125	3344.76744790479	-338.836348356895	8.57374818443186
387	-8.875	13.375	3090.17080350077	-313.946029703406	7.96671101694534
388	-8.875	13.625	3166.22200264223	-319.130632645865	8.03073082730854
389	-8.875	13.875	3288.27578980379	-328.7382181154	8.20209781329738
390	-8.875	14.125	2903.65225767543	-291.071481046327	7.28276663815134
391	-8.875	14.375	2871.83443166956	-286.624601391947	7.13874058808234
392	-8.875	14.625	2784.23936174075	-276.58657788053	6.85558643610793
393	-8.875	14.875	2743.01754774119	-271.052832929226	6.68075621300515
394	-8.875	15.125	2457.90261976956	-242.977682041871	5.99089960430613
395	-8.875	15.375	2435.05613967981	-240.118041420127	5.90331410709049
396	-8.875	15.625	2266.8156575336	-223.337860041205	5.4865236829966
397	-8.875	15.875	1934.97063440786	-190.947352965858	4.6988440162127
398	-8.875	16.125	1836.8994067946	-180.559332227998	4.42426383738757
399	-8.875	16.375	1630.04686326501	-160.294919523842	3.93007555530258
400	-8.875	16.625	1492.53356417892	-146.925784920999	3.60618837122745
401	-8.875	16.875	1329.21196913122	-130.649215389506	3.20152365627988
402	-8.875	17.125	1147.1059865834	-112.366625678822	2.74407549944877
403	-8.875	17.375	995.060148313026	-97.1985731139194	2.36642158491962
404	-8.875	17.625	973.335518959136	-94.6609362535615	2.29392979008294
405	-8.875	17.875	774.52030102401	-75.3906800508434	1.82881652803837
406	-8.875	18.125	645.235443993871	-63.0933192339698	1.53825712978749
407	-8.875	18.375	600.503468497349	-58.5724432794598	1.42402052237464

#	Х	Y	b0	b1	b2
408	-8.875	18.625	449.684832119401	-44.065656317628	1.07698724683683
409	-8.875	18.875	343.915060088529	-33.749108219077	0.826135830147559
410	-8.875	19.125	270.852531307154	-26.6705162448097	0.65539156457877
411	-8.625	12.125	2767.41916926809	-289.472642607338	7.5667056479786
412	-8.625	12.625	2722.50206713686	-282.712436013988	7.33470983245942
413	-8.625	12.875	2854.09253742677	-293.87344313222	7.56024936566792
414	-8.625	13.125	3266.4337565981	-330.790970480844	8.36712428012996
415	-8.625	13.375	3129.54636137166	-316.584739144142	7.99931070756635
416	-8.625	13.625	3298.32366546157	-330.667853116659	8.27512562069347
417	-8.625	13.875	3044.17385513591	-304.68723121171	7.61191942982538
418	-8.625	14.125	3016.55180372042	-301.192510800045	7.50530239101079
419	-8.625	14.375	3016.54379893708	-299.812026108591	7.43482496000086
420	-8.625	14.625	2782.42107871492	-276.002528974168	6.83020610573929
421	-8.625	14.875	2745.84132741915	-271.151007998212	6.67769389831516
422	-8.625	15.125	2563.9219349029	-252.989663453728	6.22581662016548
423	-8.625	15.375	2375.17101264403	-234.130672928384	5.75554642462642
424	-8.625	15.625	2165.72369838351	-213.835215411307	5.26574196139352
425	-8.625	15.875	1963.31106796995	-193.316138386834	4.74634179121444
426	-8.625	16.125	1788.79245029952	-175.875736334063	4.31085379967413
427	-8.625	16.375	1831.58696519155	-179.516295110448	4.38587573407604
428	-8.625	16.625	1667.44412635465	-163.139201754016	3.97739603698992
429	-8.625	16.875	1386.68095940829	-135.868955150644	3.3177599111229
430	-8.625	17.125	1232.2087761659	-120.581401536557	2.94099980442171
431	-8.625	17.375	1102.28567656317	-107.390862789679	2.60705356234124
432	-8.625	17.625	1019.67953685046	-99.1342098702381	2.40101359852731
433	-8.625	17.875	677.277882786039	-66.2190226613603	1.61416598795968
434	-8.625	18.125	664.182693898698	-64.8719914584332	1.57935064443381
435	-8.625	18.375	535.780737500167	-52.2934941510104	1.27232106764007
436	-8.625	18.625	325.828492992143	-32.2966995740129	0.79932294530379
437	-8.625	18.875	238.72184873681	-23.7831998502541	0.592021089438671
438	-8.375	12.375	2726.05223359816	-283.566925258818	7.37155210580082
439	-8.375	12.625	2499.80042584706	-261.3537046559	6.82576004033898
440	-8.375	12.875	2964.03012349882	-302.639370077228	7.72153122583631
441	-8.375	13.125	3148.48406044448	-318.399053002615	8.04334992939293
442	-8.375	13.375	3255.00701264197	-327.486148051024	8.22798128053489
443	-8.375	13.625	3459.59381970421	-345.643846706457	8.62064007051254
444	-8.375	13.875	3402.7170281719	-338.263297645317	8.39145133055088
445	-8.375	14.125	3415.71428056686	-339.077667012504	8.39801363165661
446	-8.375	14.375	2995.67895224118	-298.146956978345	7.4034587304112
447	-8.375	14.625	2826.23795711288	-280.458260244426	6.94310961299006
448	-8.375	14.875	2640.82094880908	-261.661283695942	6.46703640858562
449	-8.375	15.125	2517.29366675056	-247.96480143442	6.09064200341483
450	-8.375	15.375	2441.60772315802	-240.043483016288	5.88362286711662
451	-8.375	15.625	2151.01902122959	-211.774059099529	5.19838045434628
452	-8.375	15.875	2000.67847833065	-196.927334408264	4.83411525217807
453	-8.375	16.125	2048.71066911923	-200.249534471956	4.87761911704194

#	Х	Y	b0	b1	b2
454	-8.375	16.375	1779.80684109443	-174.487609246002	4.26451182349188
455	-8.375	16.625	1668.80487563473	-163.08160647888	3.97200872921426
456	-8.375	16.875	1435.47351932436	-140.373528771634	3.42132249609294
457	-8.375	17.125	1247.1183923663	-121.923882867943	2.97087479050746
458	-8.375	17.375	1080.47530002713	-105.175314804529	2.55091418009891
459	-8.375	17.625	1002.23518703191	-97.3073014940194	2.35386520668021
460	-8.375	17.875	760.040931691235	-74.271343072127	1.80952633890861
461	-8.375	18.125	646.721578293787	-63.3729108555344	1.54815120534978
462	-8.375	18.375	449.698370318417	-44.1696401601479	1.08225038866036
463	-8.375	18.625	426.508519588327	-41.6695870522778	1.0151207002886
464	-8.125	13.125	3073.59129023856	-310.950402053968	7.85853909397657
465	-8.125	13.375	3087.24339712493	-311.894375096162	7.86959222861912
466	-8.125	13.625	3031.99596174975	-304.64590584742	7.64295767678768
467	-8.125	13.875	3206.64973283311	-319.52017485592	7.94550676009756
468	-8.125	14.125	3107.12738634125	-308.833620151445	7.65915988785963
469	-8.125	14.375	2844.97497371966	-283.063373361185	7.02708231152984
470	-8.125	14.625	2655.51427211838	-264.052044825316	6.5509754242267
471	-8.125	14.875	2702.88876162965	-267.255248923462	6.59068463926061
472	-8.125	15.125	2742.84438917917	-269.687291507504	6.61134703773474
473	-8.125	15.375	2626.53393614598	-257.564169924369	6.29579334571758
474	-8.125	15.625	2496.00811040253	-244.455473806232	5.96679923847974
475	-8.125	15.875	2170.64092153331	-212.711932178279	5.19620937967005
476	-8.125	16.125	2072.99785931215	-202.768393298237	4.94204146593018
477	-8.125	16.375	1766.72089444432	-173.073523791582	4.22616250950389
478	-8.125	16.625	1642.10154600443	-160.716503205955	3.92057185636332
479	-8.125	16.875	1536.79524670828	-150.024152253926	3.64888145619526
480	-8.125	17.125	1255.23403340978	-122.576871445139	2.98296244277947
481	-8.125	17.375	1047.42914912815	-101.866515004873	2.46809485754838
482	-8.125	17.625	821.210698768078	-80.4559007027408	1.96503346664107
483	-8.125	17.875	769.612231541577	-75.0432375960981	1.82373923570846
484	-8.125	18.125	589.189392526779	-57.8139592653553	1.4147629621762
485	-8.125	18.375	590.626685381006	-57.5678033078859	1.39850961689107
486	-8.125	18.625	466.384812465281	-45.2161550179132	1.09198571016993
487	-7.875	10.125	1532.77784825581	-177.147035684339	5.08854116327684
488	-7.875	10.375	1798.91233884582	-200.718175954871	5.59148954206448
489	-7.875	10.625	1962.33149382433	-215.845866008092	5.9259031945729
490	-7.875	10.875	2210.61289086965	-238.309528313793	6.42246619200666
491	-7.875	11.125	2054.02746966139	-222.505521695971	6.02233868682847
492	-7.875	11.375	2479.53740491592	-261.650726096199	6.90652734246057
493	-7.875	11.625	2470.89182868371	-260.183235913776	6.85061670338524
494	-7.875	11.875	2380.172764226	-251.601596158908	6.64592239384732
495	-7.875	12.125	2564.24259944859	-268.083267452403	7.004668296432
496	-7.875	13.625	3373.13561974229	-336.310098519376	8.36888863806039
497	-7.875	13.875	2936.2588178557	-293.425978666595	7.31894047054603
498	-7.875	14.125	3431.91828965121	-339.139938198774	8.35919283392391
499	-7.875	14.375	2950.9771389117	-292.96845383819	7.2569376291392

#	Х	Y	b0	b1	b2
500	-7.875	14.625	2964.22049727202	-292.680598724048	7.20701451821423
501	-7.875	14.875	2763.46552697495	-272.081627641145	6.67907126897556
502	-7.875	15.125	2576.12654877915	-253.916750958239	6.24088996919496
503	-7.875	15.375	2367.94018985357	-233.163264441036	5.72508009536582
504	-7.875	15.625	2556.75012730954	-249.692877657813	6.07670060344776
505	-7.875	15.875	2285.36546101481	-223.265038905068	5.43447615876885
506	-7.875	16.125	2112.14384340753	-206.534380268452	5.0331155324826
507	-7.875	16.375	1911.07146252409	-186.411535921445	4.53012158405181
508	-7.875	16.625	1784.27621309284	-174.263675968265	4.24087210215244
509	-7.875	16.875	1512.28886502996	-147.588651962363	3.58884102513372
510	-7.875	17.125	1181.98644187397	-115.716238353931	2.8233255655897
511	-7.875	17.375	939.43158245355	-91.8544649641649	2.23875250014152
512	-7.875	17.625	796.803318713947	-78.0677577227767	1.90695952438963
513	-7.875	17.875	692.662019561624	-67.8790528613123	1.65842721556448
514	-7.625	9.875	1187.50744219908	-145.241006437399	4.36309269511579
515	-7.625	10.125	1268.28112617185	-151.29604775872	4.46113838770878
516	-7.625	10.375	1802.98874751769	-199.961240831697	5.53647799796407
517	-7.625	10.625	2271.6554125889	-244.216088017463	6.5701739875024
518	-7.625	10.875	2224.21238864331	-239.029526286692	6.42293789515981
519	-7.625	11.125	2161.76137804076	-232.389026526919	6.24526658223604
520	-7.625	11.375	2353.48262266232	-250.127508913124	6.64535736698975
521	-7.625	11.625	2521.75507122715	-264.969163694269	6.96227808742873
522	-7.625	11.875	2460.15093098981	-258.213133401887	6.7749310803079
523	-7.625	12.125	2494.7271685923	-260.61723656191	6.80513575573188
524	-7.625	13.625	3028.5158654083	-303.149124568994	7.57563260166785
525	-7.625	13.875	3063.1569714499	-305.318093498949	7.59461843046722
526	-7.625	14.125	3001.03369021194	-298.132976571842	7.38953473523333
527	-7.625	14.375	2934.95064187924	-290.383839818034	7.16637749271781
528	-7.625	14.625	2928.53198727699	-288.864261301968	7.10532935140107
529	-7.625	14.875	2802.41239369073	-275.426348637155	6.74881619345399
530	-7.625	15.125	2580.07484913847	-253.607163327408	6.21456612246949
531	-7.625	15.375	2574.28786948971	-251.844108730705	6.13929689842706
532	-7.625	15.625	2357.51491511622	-230.763798848117	5.62930262050597
533	-7.625	15.875	2341.48343970625	-228.845432720581	5.57327797326461
534	-7.625	16.125	2201.86620840939	-214.960221301607	5.22764498798303
535	-7.625	16.375	2077.49658934634	-202.727875330997	4.92891512634735
536	-7.625	16.625	1583.36964892636	-154.819983051322	3.7723497276457
537	-7.625	16.875	1428.7063907714	-139.481673499576	3.39299541866662
538	-7.625	17.125	1204.33148222326	-117.715379164436	2.86789901446935
539	-7.625	17.375	1080.41380363105	-105.390910230624	2.56224141116481
540	-7.625	17.625	868.698194980703	-84.9014258388078	2.0684936669815
541	-7.625	17.875	/04.940924389801	-68.8188447100256	1.67453157613783
542	-7.375	9.625	/08.150583912445	-97.8880137253934	3.21155407627952
543	-7.375	9.875	793.033956559484	-106.797136506904	3.43482801712803
544	-7.375	10.125	1526.63127151957	-175.002874777737	4.99281977776177
545	-7.375	10.375	1695.63696942374	-190.745220283361	5.34988441762568

#	Х	Y	b0	b1	b2
546	-7.375	10.625	2527.09907694814	-267.575337639115	7.09569695063301
547	-7.375	10.875	2503.48871092991	-265.008250951938	7.02334132699008
548	-7.375	11.125	2513.40047744315	-265.430699090063	7.01324676419977
549	-7.375	11.375	2567.23437848395	-269.274225061429	7.06700148654219
550	-7.375	11.625	2692.25285440788	-280.496460583736	7.30868311435562
551	-7.375	11.875	2393.87463809458	-251.487245764632	6.60468059196017
552	-7.375	12.125	2421.4479045872	-253.487696703482	6.63280304053189
553	-7.375	12.375	2844.48381562326	-291.625014478105	7.47386562328889
554	-7.375	13.625	3000.30330013599	-299.754595953953	7.47631399495054
555	-7.375	13.875	2936.2079084232	-293.326138265649	7.31361540636758
556	-7.375	14.125	2724.21434691877	-271.595650836955	6.75761731419076
557	-7.375	14.375	2861.37578314439	-283.319857331689	6.99768041473443
558	-7.375	14.625	2840.31006611929	-280.536958673788	6.91062621347532
559	-7.375	14.875	2843.67655154009	-279.997005555053	6.87370671137119
560	-7.375	15.125	2713.64437138363	-265.99380973367	6.49910744765653
561	-7.375	15.375	2564.98602634887	-251.345119719838	6.13839318859158
562	-7.375	15.625	2375.22168651231	-232.661193646714	5.67976345909474
563	-7.375	15.875	2201.03759785817	-215.477825511963	5.2570116853859
564	-7.375	16.125	2194.08008474209	-214.252348008188	5.21195387012362
565	-7.375	16.375	2006.03236936639	-195.840402368333	4.76374918533556
566	-7.375	16.875	1438.51799898476	-140.570357101409	3.42302536697603
567	-7.375	17.125	1336.84295840205	-130.276712105933	3.16330540928655
568	-7.375	17.375	1006.6434787657	-98.2855713373561	2.39140993792761
569	-7.125	9.875	1338.38160204209	-156.320374313869	4.54140946771356
570	-7.125	10.125	1471.19593931395	-167.919245662967	4.77794680510841
571	-7.125	10.375	1649.49771743445	-184.894179518819	5.17240675916612
572	-7.125	10.625	1983.32740019136	-214.803974903257	5.81741851206293
573	-7.125	10.875	2302.19556924454	-244.935885339521	6.52440476114942
574	-7.125	11.125	2363.6354718009	-251.158883021583	6.67667439804868
575	-7.125	11.375	2378.9901936312	-251.476934872257	6.64993288911299
576	-7.125	11.625	2298.24990292533	-243.267532236755	6.43828936623333
577	-7.125	11.875	2549.91698599392	-265.505481913132	6.91269020331992
578	-7.125	12.125	2600.30491227451	-269.887262600734	7.00442372619235
579	-7.125	12.375	2740.67097992748	-281.586326547878	7.23282199396323
580	-7.125	12.625	2806.55433317915	-286.394929345136	7.30549277122058
581	-7.125	13.625	3155.98187199784	-314.094878401899	7.80157418759646
582	-7.125	13.875	2883.70719320421	-287.085647935357	7.13235749586326
583	-7.125	14.125	3065.30550350167	-303.044915472061	7.47346615097234
584	-7.125	14.375	2962.66190995003	-292.591129204971	7.20744002642065
585	-7.125	14.625	3006.47018993867	-295.703253492021	7.25242525664418
586	-7.125	14.875	2808.1435239842	-275.952266396279	6.76019668720599
587	-7.125	15.125	2624.72595446521	-257.809522390733	6.31323220992317
588	-7.125	15.375	2535.47112264079	-248.250751919829	6.05710102403588
589	-7.125	15.625	2382.88689747965	-233.137918594821	5.68439659913936
590	-7.125	15.875	2220.01302197438	-216.866549883738	5.27915378685649
591	-7.125	16.125	1825.7230020688	-179.175858635936	4.38298499397508

#	Х	Y	b0	b1	b2
592	-7.125	16.375	1897.67551171675	-185.156571585422	4.50132656853592
593	-7.125	16.875	1289.01883976545	-126.353052167317	3.08765481467743
594	-7.125	17.125	1178.59320045815	-115.145111034758	2.80364303614102
595	-7.125	17.375	1027.73323316625	-100.126997283408	2.43069964803232
596	-6.875	9.625	801.660238477611	-103.289218104576	3.24190218882096
597	-6.875	9.875	1015.59765457748	-124.46329450586	3.75830369668901
598	-6.875	10.125	1435.51313956727	-163.335209028917	4.64008817425236
599	-6.875	10.375	1787.56183443369	-196.856340355027	5.42367727470302
600	-6.875	10.625	1759.57921394591	-194.249050555142	5.3568375198217
601	-6.875	10.875	2043.52015603214	-220.759288195988	5.96334476919358
602	-6.875	11.125	2244.31826226108	-239.411230386153	6.38495951154605
603	-6.875	11.375	2268.07452282079	-241.125465393462	6.41057301036785
604	-6.875	11.625	2372.44276634849	-249.897706027979	6.58472229943971
605	-6.875	11.875	2159.67916801289	-228.906296228779	6.06316264808426
606	-6.875	12.125	2426.43298558593	-252.829893778777	6.58655712014319
607	-6.875	12.375	2545.18578082727	-262.38257783517	6.76108177072435
608	-6.875	12.625	2604.2677135771	-267.006329806129	6.84219247585029
609	-6.875	13.875	3360.83052477745	-331.298020721974	8.14538158819303
610	-6.875	14.125	3268.02377944759	-322.277095442288	7.92636213467453
611	-6.875	14.375	2832.88768427575	-279.802680539569	6.89345927868546
612	-6.875	14.625	2874.95292437401	-283.123153753011	6.95258376668188
613	-6.875	14.875	3022.64442983887	-296.584862007065	7.25394301815325
614	-6.875	15.125	2657.1179150266	-260.599997000172	6.3699891323373
615	-6.875	15.375	2528.30630402984	-247.980287556176	6.06179874820085
616	-6.875	15.625	2296.5446669154	-224.974594816646	5.49250503163856
617	-6.875	15.875	2258.59603149259	-220.767180724964	5.3776495917692
618	-6.875	16.125	1883.02426696285	-184.20774565941	4.49023717049689
619	-6.875	16.375	1722.71319235369	-168.395027842767	4.10242322885477
620	-6.875	17.125	1143.0151947981	-111.56139398937	2.71314241662164
621	-6.875	17.375	1102.78519701227	-107.25519818456	2.59892843319804
622	-6.625	9.375	445.806216295718	-67.112980996959	2.3292805088447
623	-6.625	9.625	815.617758326945	-103.250808364722	3.20510486215973
624	-6.625	9.875	1066.76674818696	-127.470564964078	3.77711165785232
625	-6.625	10.125	1216.59691104308	-141.653959388424	4.10178297054631
626	-6.625	10.375	1673.63315685559	-185.316093628027	5.13170211654209
627	-6.625	10.625	1667.69599410252	-185.620393117907	5.15528132148665
628	-6.625	10.875	1701.43839097315	-188.801586824468	5.22366640364704
629	-6.625	11.125	2046.71201172506	-220.213676953633	5.92250826010187
630	-6.625	11.375	2390.48262165839	-252.389899626179	6.66335638700848
631	-6.625	11.625	2118.6561162011	-225.671307926204	6.00762997285621
632	-6.625	11.875	2482.05938270888	-258.958480085853	6.75557094714885
633	-6.625	12.125	2323.81467069753	-242.801310255662	6.34335143478019
634	-6.625	12.375	2528.59484662501	-260.998917667299	6.7354136866118
635	-6.625	12.625	2783.15547106597	-283.240389240947	7.20533858350655
636	-6.625	14.875	2690.33739377872	-264.642041830846	6.49017920550382
637	-6.625	15.125	2634.6245407613	-258.778052552012	6.33617542554134

#	Х	Y	b0	b1	b2
638	-6.625	15.375	2511.53301694045	-246.517886602221	6.03120358284747
639	-6.625	15.625	2343.27298023878	-229.139900536669	5.58335686900735
640	-6.625	15.875	2050.32137305425	-200.762486644024	4.89995753557525
641	-6.375	9.375	295.790760786417	-52.1990095768415	1.96134715229392
642	-6.375	9.625	544.512185441058	-76.4593315609729	2.5394888064919
643	-6.375	9.875	1046.44341847993	-124.721585883923	3.6880877955647
644	-6.375	10.125	1252.1860800653	-145.013186655858	4.17711741891848
645	-6.375	10.375	1342.34964995831	-154.298813738176	4.41213532399726
646	-6.375	10.625	1704.96352864476	-188.416411459955	5.20150679055264
647	-6.375	10.875	1902.37569740784	-207.621422165951	5.66074158914401
648	-6.375	11.125	1874.18049729286	-204.866588610296	5.58886860152757
649	-6.375	11.375	2256.89001965268	-239.497703380297	6.35904971352836
650	-6.375	11.625	2133.23460660237	-226.865113453025	6.03334029478211
651	-6.375	11.875	2239.60732285341	-235.981947904569	6.21582628916758
652	-6.375	12.125	2444.14224012231	-254.467143650882	6.62323545060825
653	-6.375	12.375	2620.67956329775	-269.514608653235	6.92961930692681
654	-6.375	12.625	3045.36470882032	-308.147187902814	7.79105822395877
655	-6.375	12.875	3000.22534581115	-301.811775162232	7.58474654992376
656	-6.375	13.125	3126.50647338089	-312.64328574466	7.80623961700327
657	-6.375	14.875	2982.86223371234	-292.249015076335	7.13688274018932
658	-6.375	15.125	2784.5823835682	-272.629907021905	6.65227581920731
659	-6.375	15.375	2377.60758830203	-233.543287158743	5.71948519194243
660	-6.375	15.625	2126.78953962137	-208.509123692615	5.09616019238863
661	-6.375	15.875	2083.71626248681	-203.3281165555	4.94418553024731
662	-6.375	16.125	1872.93075345514	-182.921688460189	4.45204936994207
663	-6.125	10.125	1058.49763872254	-125.462054337265	3.68936095679931
664	-6.125	10.375	1285.01894641748	-148.262464420475	4.2529116682596
665	-6.125	10.625	1663.8111128141	-184.897895071927	5.12888448259587
666	-6.125	10.875	1732.31019198305	-192.322142651397	5.32217289350944
667	-6.125	11.125	1790.12420109282	-197.308716846877	5.42684919746649
668	-6.125	11.375	1954.58775363381	-211.589034423072	5.72098060727907
669	-6.125	11.625	2163.53386790864	-229.96474827314	6.11054405944986
670	-6.125	11.875	2150.08594976345	-227.573735780686	6.02226213006199
671	-6.125	12.125	2470.60434153093	-256.888972543222	6.67881583863614
672	-6.125	12.375	2607.63939519382	-267.938361818854	6.88294911820301
673	-6.125	12.625	2821.65833331963	-287.245115219009	7.30849130998506
674	-6.125	12.875	3062.57978631775	-308.014694153893	7.73822883358619
675	-6.125	13.125	3250.42849587024	-324.107033885174	8.0691241372151
676	-5.875	10.375	1280.11189255712	-146.847698269655	4.18907969915094
677	-5.875	10.625	1198.35893539282	-140.805956915809	4.09289847978773
678	-5.875	10.875	1581.49693500115	-177.954251889707	4.98346897402327
679	-5.875	11.125	1948.36878329341	-211.499536543327	5.73784462511649
680	-5.875	11.375	1757.04200617388	-192.634777520679	5.27075053636087
681	-5.875	11.625	1853.01525581952	-200.097933007008	5.3973544670983
682	-5.875	11.875	2285.84098615596	-240.135738855444	6.30894327787348
683	-5.875	12.125	2801.33557667138	-287.713921093876	7.38851433914978

#	Х	Y	b0	b1	b2
684	-5.875	12.375	2891.34379540604	-294.846556998622	7.51655039631224
685	-5.875	12.625	2712.32989426345	-276.445304190046	7.04223908238503
686	-5.875	12.875	2832.99601095639	-286.532933512896	7.24038363173937
687	-5.875	13.125	3079.6610266877	-308.101513174417	7.69727172846389
688	-5.625	10.625	1027.80943774567	-124.170549140521	3.69172436756157
689	-5.625	10.875	1245.29422654927	-145.759807009988	4.22419539472531
690	-5.625	11.125	1512.85783546016	-170.952750997554	4.80622841811684
691	-5.625	11.625	1859.30307349665	-200.262272259787	5.38909633517569
692	-5.625	11.875	2185.98624148659	-230.712484795442	6.08732310512324
693	-5.625	12.125	2268.65557284852	-237.463542670089	6.21476899119274
694	-5.625	12.375	2769.99189449891	-283.316621986025	7.24498911019446
695	-5.625	12.625	2870.53594860792	-291.376953195069	7.39130115673974
696	-5.625	12.875	2683.72443706462	-272.334203964844	6.90603403392625
697	-5.625	13.125	3010.9476424877	-301.615258439603	7.54565241004139
698	-5.375	10.875	1362.01519282774	-156.175072281674	4.44886394308311
699	-5.375	11.125	1518.54868852674	-169.816276022022	4.7375582556643
700	-5.375	11.375	1880.99282671565	-203.513683691477	5.50532405506188
701	-5.375	11.625	2156.89306278945	-227.900897976586	6.02475913644285
702	-5.375	11.875	2242.55534239543	-235.49520798843	6.18461170732384
703	-5.375	12.125	2168.69511922661	-228.555006149096	6.02020860748666
704	-5.375	12.375	2484.00844015026	-256.793452104672	6.63743713594387
705	-5.375	12.625	2787.42724756508	-283.988685149062	7.23261095424533
706	-5.375	12.875	2845.70035911185	-287.982753440095	7.28304406819977
707	-5.375	13.125	2911.01879630233	-292.42812447787	7.33783244325613
708	-5.125	11.375	2080.12979363755	-221.224746452875	5.88752839558138
709	-5.125	11.625	2187.37055085054	-230.766401011805	6.09290742187706
710	-5.125	11.875	1987.48345075606	-211.924374173884	5.65023480346794
711	-5.125	12.125	2354.25983250817	-245.375160129637	6.39602730513608
712	-5.125	12.375	2327.33635083574	-241.550203386404	6.26854826075639
713	-5.125	12.625	2663.32439643323	-271.960089379837	6.94135931231733
714	-5.125	12.875	2867.06230018926	-289.931672615704	7.32657910057565
715	-5.125	13.125	2878.80415182533	-289.49987852223	7.27298537804286
716	-4.875	11.625	1780.75943368765	-191.819966059546	5.16611909820478
717	-4.875	11.875	2134.48269394499	-224.033637035716	5.88305351419668
718	-4.875	12.125	2217.03723735669	-231.662994803552	6.05451487732407
719	-4.625	11.875	2078.16143390944	-218.326816179386	5.74099440130499
720	-4.625	12.125	2201.69588947088	-229.823843917766	6.00049174041623
721	-4.875	13.375	2891.24887640081	-289.518706614155	7.2407665351198
722	-6.125	13.375	3082.75825151176	-307.393188201247	7.65320446905737
723	-9.125	11.375	1695.06893492352	-192.025284548156	5.39901622215427
724	-5.625	11.375	1893.22490723348	-205.112487688141	5.55053435470706
725	-11.375	18.625	551.446203543597	-54.6762123595742	1.3536852850387

Anexo B3. Coeficientes para el pronóstico de temperatura en 725 píxeles que conforman las cuencas Bani y Senegal en la estación Bakel. Los coeficientes son con el modelo polinomial (mejor rendimiento).

#	Х	Х	b0	b1	b2
1	-12.625	14.875	-77.7688837667531	10.7118558270127	-0.260897881965767
2	-7.875	12.375	-117.20048125564	13.6238023583678	-0.316228107548696
3	-7.875	12.625	-116.486507841969	13.5938280312143	-0.316357479051568
4	-12.625	14.125	-80.3453179487102	10.6483305166251	-0.253022300397626
5	-11.375	14.375	-92.3918256893988	11.8413987824684	-0.282849615759162
6	-12.125	12.625	-91.9200715904278	11.3523068318344	-0.264228790808801
7	-11.375	16.625	-56.325067435729	9.46665519198849	-0.248465846172833
8	-9.375	12.875	-106.282550911289	12.6625955267184	-0.294633479682795
9	-5.625	9.375	-76.6206078024533	9.37171208726836	-0.210296677242533
10	-12.375	11.375	-85.0361055200011	9.82484293297284	-0.219656395358297
11	-12.125	10.375	-67.9189262330677	8.29133508860839	-0.183036496461522
12	-13.875	16.125	-54.1050496318434	8.67393481772448	-0.217732329691367
13	-7.375	16.625	-55.2071797903358	9.39241110561673	-0.247914933887359
14	-9.625	15.125	-70.7512707373649	10.250041697866	-0.256793976682178
15	-7.625	9.625	-74.6063478414418	9.08980461208485	-0.202507845743881
16	-12.375	13.375	-95.4506356960776	11.755762536714	-0.273285879525098
17	-12.375	14.125	-71.8721986671458	9.8685729551531	-0.235154127111389
18	-12.375	14.375	-91.3879135971348	11.769905432211	-0.280719333819982
19	-12.375	14.625	-91.4459667191164	11.8756579751584	-0.285581484006028
20	-12.375	14.875	-86.3574949209884	11.5144306634049	-0.279114827851523
21	-12.125	10.625	-77.9155432395714	9.17965862069228	-0.203507436654107
22	-12.125	10.875	-88.3993622839363	10.1139570123365	-0.22516009295753
23	-12.125	11.125	-88.6559565733465	10.2062249426964	-0.228826963620843
24	-12.125	11.375	-91.9371881993897	10.5450462945568	-0.236979419230294
25	-12.125	13.375	-91.2301543310402	11.3733967913051	-0.26474609238299
26	-12.125	13.625	-85.4174794419077	10.9219934482939	-0.255886755958822
27	-12.125	13.875	-93.6162389907278	11.7863180587879	-0.277172382056861
28	-12.125	14.125	-80.8909363803013	10.7197560596951	-0.254678471985136
29	-12.125	14.375	-85.4573536848904	11.2445861546268	-0.268927121005624
30	-12.125	14.625	-93.9513700421313	12.1821319101415	-0.293719278186699
31	-12.125	14.875	-85.9821265016091	11.4912746917345	-0.278525712912271
32	-12.125	15.125	-67.0020596797326	9.79962777352853	-0.241343434734004
33	-11.875	10.625	-86.0886238623666	9.9103599929327	-0.219534989394365
34	-11.875	10.875	-86.1654240034235	9.99503982076999	-0.223377096709813
35	-11.875	11.125	-97.4725790887359	11.1243077900346	-0.250713182069454
36	-11.875	11.375	-98.5102470096265	11.2676831458372	-0.255521025313429
37	-11.875	12.375	-82.9639201853574	10.3494336172144	-0.238130904363237
38	-11.875	13.125	-91.2146599550199	11.3326340695084	-0.263807162298232

#	Х	Х	b0	b1	b2
39	-11.875	13.375	-96.7032192896023	11.9037310339845	-0.277334685411365
40	-11.875	13.625	-100.955048759076	12.3458924987082	-0.287912381351365
41	-11.875	13.875	-94.7077939008119	11.8710028238847	-0.278614072286018
42	-11.875	14.125	-80.6936317592256	10.6944543227053	-0.254042153518928
43	-11.875	14.375	-81.2084558078741	10.7986644151304	-0.257742745093171
44	-11.875	14.625	-105.231198791887	13.1730900611801	-0.314856677420805
45	-11.875	14.875	-80.8098308895018	11.0077724388294	-0.267175416207285
46	-11.875	15.125	-74.5252909725762	10.4899887075789	-0.256848232369993
47	-11.875	15.375	-71.4791909152885	10.2774170660797	-0.253770349886477
48	-11.875	16.875	-51.5120700249898	8.8695239887507	-0.231963461173514
49	-11.875	17.125	-44.3878418659166	8.27538008608208	-0.220460947312592
50	-11.625	10.625	-86.9836652411013	10.0321466501073	-0.222631121537985
51	-11.625	10.875	-97.957165792494	11.1097676610596	-0.24874748012194
52	-11.625	11.125	-104.324481495321	11.8410746512543	-0.267928780017098
53	-11.625	11.375	-98.091801935103	11.2765731202615	-0.255782193020841
54	-11.625	11.875	-77.1640849854724	9.46856824758786	-0.21419347720987
55	-11.625	12.125	-86.3257857514198	10.4907717600846	-0.239913770886434
56	-11.625	12.375	-89.0507584490569	10.9220367610421	-0.252935541748878
57	-11.625	12.625	-100.901280708591	12.1269084051704	-0.281356166123309
58	-11.625	12.875	-116.136697940723	13.6374085759738	-0.316892245495925
59	-11.625	13.125	-102.22826247337	12.4031181555184	-0.288871627363182
60	-11.625	13.375	-104.247420001346	12.6167760261747	-0.293651535130224
61	-11.625	13.625	-100.930910176623	12.3606578609048	-0.288451792562858
62	-11.625	13.875	-82.9209277610426	10.7298275760701	-0.251963235393702
63	-11.625	14.125	-82.3592020275566	10.7708652752558	-0.254778141881675
64	-11.625	14.375	-82.0675758950757	10.8675079853064	-0.259684276347028
65	-11.625	14.625	-91.516924423791	11.8920702144754	-0.28583882486287
66	-11.625	14.875	-87.9656283813732	11.6471679173137	-0.281194212512183
67	-11.625	15.125	-80.6599653104214	11.0156404685627	-0.267823021152158
68	-11.625	15.375	-75.2369464435516	10.6508163261109	-0.262615423156893
69	-11.625	15.625	-66.1262127690753	9.91160928772975	-0.248489475020214
70	-11.625	15.875	-54.2326846628896	8.90867289087645	-0.228251782292499
71	-11.625	16.125	-61.8059633277497	9.64869440045436	-0.246611192425009
72	-11.625	16.375	-65.5339723483826	10.0765694073241	-0.258034404131812
73	-11.625	16.625	-56.6168667429355	9.34048286974495	-0.242994451111973
74	-11.625	16.875	-39.2772731856143	7.8840063704192	-0.213381840459129
75	-11.625	17.125	-36.769963685526	7.73348881748364	-0.212280171096042
76	-11.625	17.375	-31.7260649329027	7.24910825650115	-0.202032551507921
77	-11.375	10.625	-90.109549627195	10.2489349094133	-0.226345177659675
78	-11.375	10.875	-108.318295979534	12.0744871118674	-0.270398181270799
79	-11.375	11.125	-109.888328634973	12.3499123207738	-0.278805069481326
80	-11.375	11.375	-100.894925357807	11.5409122251864	-0.261054846143493
81	-11.375	11.625	-90.3147131218413	10.652302036881	-0.242200438918584
82	-11.375	11.875	-94.6981987177912	11.0893949376113	-0.251493878874132
83	-11.375	12.125	-90.3512688789585	10.7847572948	-0.245904801676879
84	-11.375	12.375	-93.5267608053376	11.282974186256	-0.26028483321237

#	Х	Х	b0	b1	b2
85	-11.375	12.625	-90.2054407121667	11.2639728552039	-0.263712122622734
86	-11.375	12.875	-107.360951786243	12.9252210702053	-0.302405105161596
87	-11.375	13.125	-90.0766828918083	11.3347886669802	-0.265385477780168
88	-11.375	13.375	-93.3317715757701	11.6253199668189	-0.271589860730879
89	-11.375	13.625	-93.4742636112665	11.6398098930888	-0.272073951277856
90	-11.375	13.875	-100.777134083174	12.3148748306216	-0.287574992802822
91	-11.375	14.125	-88.8726931758281	11.3427003784729	-0.267736580047769
92	-11.375	14.625	-88.4331869056786	11.6050513071865	-0.279518986711921
93	-11.375	14.875	-90.5637997271388	11.8536464631583	-0.285375045278945
94	-11.375	15.125	-83.3795775595539	11.2222041663911	-0.271609463750481
95	-11.375	15.375	-80.3658550473269	11.0629830464904	-0.27061105778298
96	-11.375	15.625	-59.5218985204464	9.33331404814794	-0.23577302875254
97	-11.375	15.875	-56.5167937449663	9.18071297825732	-0.235192566600861
98	-11.375	16.125	-49.3055667373843	8.61020990770216	-0.224330689337644
99	-11.375	16.375	-51.3959967124777	8.88522959824389	-0.232508789366093
100	-11.375	16.875	-43.5672107901227	8.39132771831403	-0.226443559778644
101	-11.375	17.125	-33.0220646055009	7.5305532330757	-0.209811411695841
102	-11.375	17.375	-22.4323140666241	6.55044141095406	-0.188899467063457
103	-11.375	17.625	-24.1728513916939	6.71831198925324	-0.193848632410042
104	-11.375	17.875	-11.3171066746224	5.51796502892094	-0.167166443133387
105	-11.125	11.125	-106.803292553915	12.1107503061508	-0.273086372593839
106	-11.125	11.375	-116.194178471109	13.0019040980401	-0.29390324304959
107	-11.125	11.625	-110.143378372542	12.4748784557699	-0.282496433405243
108	-11.125	11.875	-88.2249235365391	10.5427278454145	-0.239617973484238
109	-11.125	12.125	-66.470023859189	8.70369157728771	-0.200239273757392
110	-11.125	12.375	-75.2700022089939	9.7587818353679	-0.227440389736219
111	-11.125	12.625	-102.070600294684	12.3977604834783	-0.290056242980028
112	-11.125	12.875	-101.005691554649	12.2101944230245	-0.284743804960802
113	-11.125	13.125	-103.649103693406	12.4716432051742	-0.290399791987643
114	-11.125	13.375	-93.8508808483085	11.6159027827864	-0.271652128986452
115	-11.125	13.625	-100.395825118491	12.2587063973017	-0.287059896662351
116	-11.125	13.875	-98.3497292278948	12.1785091740836	-0.28673820785593
117	-11.125	14.125	-85.0392814270681	11.1745733521346	-0.267957651629769
118	-11.125	14.375	-97.0591528694411	12.3606198771044	-0.296268978059636
119	-11.125	14.625	-84.0322912637529	11.2897095385144	-0.273622283435311
120	-11.125	14.875	-88.3955698142685	11.6448657159749	-0.280148354916987
121	-11.125	15.125	-73.0209290401364	10.2769121137864	-0.250524795579582
122	-11.125	15.375	-77.6053412081245	10.7839166764815	-0.264221149261896
123	-11.125	15.625	-73.485216690489	10.4760427889232	-0.25912423339528
124	-11.125	15.875	-51.8103851943651	8.63319961062479	-0.220565893043791
125	-11.125	16.125	-55.0177857463572	9.08834609330409	-0.234017755282393
126	-11.125	16.375	-49.3344865538643	8.68038639561497	-0.226794430209313
127	-11.125	16.625	-44.0785974461491	8.29549410644751	-0.220246190204263
128	-11.125	16.875	-40.4816981387081	8.06998310547837	-0.217665892795643
129	-11.125	17.125	-29.7173664892839	7.22515172917619	-0.202508174574746
130	-11.125	17.375	-21.0442244335107	6.52237326570285	-0.18968859162107

#	Х	Х	b0	b1	b2
131	-11.125	17.625	-6.35856198012002	5.25384717991932	-0.164160292547515
132	-11.125	17.875	-3.68790855093425	5.01326944689865	-0.159653614638919
133	-11.125	18.125	-5.15134710022782	5.11440927357691	-0.161243816004336
134	-10.875	11.625	-114.375123055358	12.9058690552881	-0.292204838097953
135	-10.875	11.875	-92.8187693889576	10.9885184200939	-0.249716832117027
136	-10.875	12.125	-75.4894637889896	9.55704317640979	-0.220315560192198
137	-10.875	12.375	-105.368450244931	12.526891790924	-0.291230165452822
138	-10.875	12.625	-89.7070546748389	11.143771041451	-0.260110915884935
139	-10.875	12.875	-102.377858373591	12.2641253613602	-0.284975612174193
140	-10.875	13.125	-97.4548929728615	11.9179437569615	-0.278450988360168
141	-10.875	13.375	-95.3823244974974	11.8000129775015	-0.276201694386892
142	-10.875	13.625	-107.030243308241	13.0089502840639	-0.30576378148795
143	-10.875	13.875	-92.1547008852287	11.7193704844316	-0.277729539641754
144	-10.875	14.125	-90.0397293268198	11.5358454235844	-0.273503401264276
145	-10.875	14.375	-92.1264370161042	11.7883342556027	-0.280031171510964
146	-10.875	14.625	-81.0635214339149	10.9031122047352	-0.262206965360184
147	-10.875	14.875	-81.8311906078177	11.0871179148414	-0.268463850261342
148	-10.875	15.125	-85.8427248916391	11.5390818758074	-0.280504819382096
149	-10.875	15.375	-78.60892236448	10.9263512061073	-0.268365567207073
150	-10.875	15.625	-73.4103215971704	10.5360172058816	-0.262172785361711
151	-10.875	15.875	-60.6131605781751	9.44530419834537	-0.239523059554536
152	-10.875	16.125	-59.9848818422717	9.50977867406205	-0.243544522008639
153	-10.875	16.375	-60.7095921035577	9.67666137105401	-0.249093220250709
154	-10.875	16.625	-37.0116046927033	7.61022593482133	-0.204215374820238
155	-10.875	16.875	-48.6011191932503	8.77577742873721	-0.232690331713643
156	-10.875	17.125	-23.7795270642177	6.64910879924892	-0.188892539294051
157	-10.875	17.375	-1.24664422097058	4.70018274243059	-0.14845289902978
158	-10.875	17.625	2.4481387742762	4.42728296729173	-0.144750574517529
159	-10.875	17.875	3.25398444049743	4.39879974608465	-0.145724239022682
160	-10.875	18.125	7.98456942326903	3.97021968767352	-0.136457731444404
161	-10.625	11.625	-111.62998851196	12.6624976649763	-0.286030456923161
162	-10.625	11.875	-97.2251173994733	11.4127056414966	-0.259095008762659
163	-10.625	12.125	-99.5677932959221	11.763430170673	-0.269672622284734
164	-10.625	12.375	-91.0062291562961	11.1061299195314	-0.257873525919161
165	-10.625	12.625	-96.9167290436483	11.7021720447292	-0.2713631242905
166	-10.625	12.875	-108.730842502005	12.8680815163484	-0.299113996430597
167	-10.625	13.125	-87.4383217175907	11.053429771913	-0.259722423931884
168	-10.625	13.375	-94.8867828092093	11.8262012851741	-0.277984062080778
169	-10.625	13.625	-85.8228776284017	11.0097945545408	-0.259109065213823
170	-10.625	13.875	-83.2929600415776	10.7977551578279	-0.254422607567042
171	-10.625	14.125	-94.2873892208778	11.7510751025397	-0.275421479644913
172	-10.625	14.375	-91.4992198398335	11.6051130621991	-0.273893365096606
173	-10.625	14.625	-83.6175500259412	11.0290605494588	-0.263826137956479
174	-10.625	14.875	-80.547144716078	10.8912550052425	-0.2632528821663
175	-10.625	15.125	-80.1158797247189	10.9803107667474	-0.267661120127344
176	-10.625	15.375	-80.7053616610315	11.1757766787957	-0.275193541508337

#	Х	Х	b0	b1	b2
177	-10.625	15.625	-79.3189548853975	11.135444017629	-0.276912577041963
178	-10.625	15.875	-75.0450208368858	10.8304925830894	-0.272179627575512
179	-10.625	16.125	-63.6607400085655	9.88602739674894	-0.253097029112521
180	-10.625	16.375	-55.1896982505863	9.17512749146275	-0.238471579590351
181	-10.625	16.625	-49.5887104384205	8.75208545023798	-0.230429290769625
182	-10.625	16.875	-42.6100949979843	8.1804537955906	-0.218980947522148
183	-10.625	17.125	-32.2321165918029	7.38738556815163	-0.205155321817677
184	-10.625	17.375	-3.91029976828089	4.92152368590639	-0.153088208764288
185	-10.625	17.625	1.26609011430059	4.49108083219282	-0.144972849325705
186	-10.625	17.875	-0.542074755289693	4.72341610808218	-0.152465985969635
187	-10.625	18.125	9.5209522978309	3.85780263455932	-0.134491562977766
188	-10.625	18.375	13.2745022730093	3.50718284088367	-0.12697597964682
189	-10.625	18.625	26.7738818343059	2.24543494837266	-0.099075867514746
190	-10.625	18.875	30.7506324514799	1.87096291537263	-0.091615887059299
191	-10.375	11.875	-110.441785998798	12.7089667177035	-0.290009381489567
192	-10.375	12.125	-101.132423200882	11.8913538176307	-0.272053838046375
193	-10.375	12.375	-76.7185862835169	9.83001240911834	-0.2294757602303
194	-10.375	12.625	-97.9900554755509	11.8199458690179	-0.274788876258801
195	-10.375	12.875	-103.454894867946	12.4583281510046	-0.291169543346872
196	-10.375	13.125	-90.286469770385	11.2698864297571	-0.263951968003983
197	-10.375	13.375	-99.365597380106	12.1810528262325	-0.285353359066898
198	-10.375	13.625	-92.5920904716426	11.5748540556624	-0.271222561532007
199	-10.375	13.875	-95.077145356734	11.8271411414973	-0.277242665557093
200	-10.375	14.125	-92.3829753074388	11.593662632946	-0.272798814765399
201	-10.375	14.375	-89.9021479836878	11.5257327120759	-0.274511801647509
202	-10.375	14.625	-90.5089459644143	11.6789607196301	-0.280189196181526
203	-10.375	14.875	-82.0328769808295	11.0186225133642	-0.26726557543572
204	-10.375	15.125	-82.5791680855591	11.1472172881097	-0.2708444399304
205	-10.375	15.375	-87.9206674381081	11.8103986255576	-0.289606627840724
206	-10.375	15.625	-70.5934618431113	10.4053934511338	-0.261705124081013
207	-10.375	15.875	-74.9840656830402	10.9216304531003	-0.276280243164303
208	-10.375	16.125	-67.0095686365429	10.2549542469296	-0.262837027142092
209	-10.375	16.375	-64.1083981886423	10.0315401647539	-0.258620136287546
210	-10.375	16.625	-48.7944110666696	8.68593928839585	-0.229665309894802
211	-10.375	16.875	-46.5030553041229	8.52557043937842	-0.227568187038704
212	-10.375	17.125	-25.0019325835802	6.70281185896944	-0.190319182682567
213	-10.375	17.375	-9.67458759756178	5.41717265968545	-0.164066455593574
214	-10.375	17.625	-4.87998986981394	5.04792545430907	-0.157629289935537
215	-10.375	17.875	2.19867553759976	4.49346848722232	-0.14791766539973
216	-10.375	18.125	18.8755144049253	3.00727019713099	-0.115712365331757
217	-10.375	18.375	20.1939398082722	2.92203164697263	-0.115051918866238
218	-10.375	18.625	27.7671548833734	2.22098574884001	-0.100242337631725
219	-10.375	18.875	31.6128133033452	1.85224549761584	-0.09269258295337
220	-10.125	11.875	-115.903743072265	13.2395712847366	-0.303224371948998
221	-10.125	12.125	-94.8784112542214	11.3516947961915	-0.261403769266137
222	-10.125	12.375	-90.164985636584	11.0750561176435	-0.258195237080228

#	Х	Х	b0	b1	b2
223	-10.125	12.625	-100.950102230196	12.1391600230563	-0.283176135149726
224	-10.125	12.875	-98.9423851220513	12.0442725305232	-0.281782664834248
225	-10.125	13.125	-92.0320788900509	11.3782572354882	-0.265440927602914
226	-10.125	13.375	-94.2332084200131	11.6648393194046	-0.272834433987415
227	-10.125	13.625	-109.040482547164	13.1350242816532	-0.307413873933175
228	-10.125	13.875	-106.796978111934	12.9579496476223	-0.303878402279885
229	-10.125	14.125	-100.37851469632	12.4862937485623	-0.296055994618862
230	-10.125	14.375	-103.677995812598	12.8486611690404	-0.305714055173365
231	-10.125	14.625	-94.6996699089558	12.0612061872546	-0.289328254731453
232	-10.125	14.875	-90.8190200850056	11.8323198165142	-0.286370492872997
233	-10.125	15.125	-79.3710776318276	10.9029419770589	-0.267239646152062
234	-10.125	15.375	-93.6561252270039	12.2922868705782	-0.300406344736747
235	-10.125	15.625	-75.7356507136591	10.8797252304596	-0.273347112279905
236	-10.125	15.875	-70.0924051539429	10.5082958181807	-0.267676708353309
237	-10.125	16.125	-66.3926841256375	10.2505497534908	-0.263870511896567
238	-10.125	16.375	-61.7340360025244	9.8864091480555	-0.256658158263792
239	-10.125	16.625	-45.0784409601849	8.42650101231588	-0.225279333228065
240	-10.125	16.875	-44.8171298384702	8.44561974484436	-0.227796910220222
241	-10.125	17.125	-32.2651783934241	7.41003487506466	-0.20745000089591
242	-10.125	17.375	-12.8076769804542	5.73801890717394	-0.172349305255936
243	-10.125	17.625	6.02745228643527	4.07847899002041	-0.136721856750469
244	-10.125	17.875	6.64965197971474	4.07913880855415	-0.138680625242748
245	-10.125	18.125	11.7912162535467	3.64567829782931	-0.130251211563096
246	-10.125	18.375	22.8558886532927	2.66940670528162	-0.109507217718954
247	-10.125	18.625	28.3670147907665	2.22161629834621	-0.101304978746993
248	-10.125	18.875	39.5716330003549	1.18106043313929	-0.078535980824779
249	-10.125	19.125	44.5637091716133	0.696500974122159	-0.068252179829776
250	-9.875	11.875	-106.01956936845	12.3761690966117	-0.28528442449061
251	-9.875	12.125	-111.667263573384	12.8768432104758	-0.296487329248864
252	-9.875	12.375	-103.624483323016	12.260432623916	-0.284608674420464
253	-9.875	12.625	-92.4780619188494	11.3627542401194	-0.266095881839907
254	-9.875	12.875	-103.671213598541	12.4574436262852	-0.290735731684334
255	-9.875	13.125	-96.5205437370643	11.8253817458006	-0.276207663884308
256	-9.875	13.375	-101.003250177474	12.3188779346998	-0.288446439068304
257	-9.875	13.625	-112.743900767012	13.4793562068991	-0.315369815866708
258	-9.875	13.875	-104.671268721788	12.8386594804252	-0.302527102796207
259	-9.875	14.125	-106.321418557513	13.0287291854406	-0.307843844654988
260	-9.875	14.375	-104.032737276213	12.8888952233491	-0.306349061562287
261	-9.875	14.625	-95.2482570671268	12.1504158443491	-0.29181013373312
262	-9.875	14.875	-84.6831444913789	11.2763521305789	-0.273871894387729
263	-9.875	15.125	-84.3402927370746	11.4029565277013	-0.280249880575164
264	-9.875	15.375	-82.3506998813966	11.3315104452437	-0.281065343657271
265	-9.875	15.625	-77.5256436704018	11.0735916809673	-0.278713926942079
266	-9.875	15.875	-69.1400910193692	10.4572180311011	-0.267656850441787
267	-9.875	16.125	-53.8355839509322	9.11550165086774	-0.238299419099898
268	-9.875	16.375	-53.825625383989	9.20022276537699	-0.241815104834343

#	Х	Х	b0	b1	b2	
269	-9.875	16.625	-46.6702585813904	8.63081696698171	-0.231082046727325	
270	-9.875	16.875	-31.8858571785595	7.35708124646098	-0.204934700971676	
271	-9.875	17.125	-28.4200182913014	7.10838816792769	-0.201509429079648	
272	-9.875	17.375	-14.8690789937309	5.95595890520132	-0.177907904854145	
273	-9.875	17.625	-6.57169913769474	5.25128217587028	-0.163688521628514	
274	-9.875	17.875	6.50801353536193	4.0994299403697	-0.139326607809194	
275	-9.875	18.125	13.9757455787508	3.47693371461615	-0.127070400342203	
276	-9.875	18.375	22.9263588438629	2.67553459004956	-0.109925983199704	
277	-9.875	18.625	31.9159985418884	1.88719271831476	-0.093625378111353	
278	-9.875	18.875	37.3598752365303	1.41315926114955	-0.084206921092262	
279	-9.875	19.125	44.1063021602158	0.772488293887974	-0.070584464307523	
280	-9.875	19.375	43.5195599052764	0.851609869529875	-0.07342178742869	
281	-9.875	19.625	55.3812873795207	-0.219293755840893	-0.049696022395541	
282	-9.625	11.625	-108.835823482433	12.6412431099975	-0.291237665775545	
283	-9.625	11.875	-110.720011962248	12.7706605425817	-0.293028091945644	
284	-9.625	12.125	-109.039530504089	12.6054705958598	-0.289213981539879	
285	-9.625	12.375	-108.982845481445	12.7440389302462	-0.295237425601031	
286	-9.625	12.625	-115.258085080069	13.4230470371051	-0.312140770799365	
287	-9.625	12.875	-116.39973679485	13.599107997548	-0.316140211960483	
288	-9.625	13.125	-92.7584652339797	11.4759683283888	-0.268562276056899	
289	-9.625	13.375	-109.891077573372	13.0938557243216	-0.305373230488277	
290	-9.625	13.625	-108.775923754618	13.078149926977	-0.30597587657473	
291	-9.625	13.875	-106.653542702244	12.9348056910786	-0.303306463232544	
292	-9.625	14.125	-92.1861926290256	11.7421506382373	-0.279440209508642	
293	-9.625	14.375	-105.742401524381	13.0406897648219	-0.310285165060897	
294	-9.625	14.625	-90.848176690486	11.78445547805	-0.284327710790575	
295	-9.625	14.875	-79.8825422368508	10.946480809796	-0.269218530493787	
296	-9.625	15.375	-76.20759429763	10.842781819503	-0.271856724725802	
297	-9.625	15.625	-68.6128567899202	10.2712078223002	-0.261004171401863	
298	-9.625	15.875	-67.4945494163076	10.2971950494983	-0.264011435809418	
299	-9.625	16.125	-52.8979549755072	9.02086530356401	-0.236022859282164	
300	-9.625	16.375	-45.5252911162268	8.45219432826498	-0.225243975772577	
301	-9.625	16.625	-55.3594277700447	9.41925018308971	-0.24884423582539	
302	-9.625	16.875	-33.3758015070456	7.51943506425145	-0.209155197061005	
303	-9.625	17.125	-26.8437554081413	7.01069141188896	-0.200141787447778	
304	-9.625	17.375	-10.0949033383494	5.55186471288972	-0.169382309518384	
305	-9.625	17.625	5.08377025840519	4.21022001825966	-0.140765925957952	
306	-9.625	17.875	-2.86832551005411	4.98092726430251	-0.159567354608769	
307	-9.625	18.125	12.1696622893647	3.6401303306172	-0.130713440590394	
308	-9.625	18.375	19.3912564582685	3.00845591001918	-0.11760590790635	
309	-9.625	18.625	27.6136721363074	2.28506082087296	-0.102552938111345	
310	-9.625	18.875	36.5532272016816	1.48156968597081	-0.08565375086042	
311	-9.625	19.125	47.7721563788739	0.474343886330151	-0.064536542591454	
312	-9.625	19.375	52.5821751055148	0.063857618208481	-0.056366270090222	
313	-9.625	19.625	42.6292603927032	0.986339226446446	-0.077502623218375	
314	-9.625	19.875	58.981515305198	-0.481954320599639	-0.04526679475772	
#	Х	Х	b0	b1	b2	
-----	--------	--------	-------------------	--------------------	--------------------	--
315	-9.375	11.625	-107.936909253777	12.5873855963003	-0.29007066506205	
316	-9.375	11.875	-112.129012280736	12.9629930065439	-0.298093291639281	
317	-9.375	12.125	-105.267955573817	12.3367308194248	-0.283289043297495	
318	-9.375	12.375	-109.523573109783	12.8139448754589	-0.295970962190692	
319	-9.375	12.625	-109.911361425361	12.9627445375892	-0.301907677881958	
320	-9.375	13.125	-91.8142002450914	11.3787605458705	-0.266068060896184	
321	-9.375	13.375	-110.696477885786	13.1288030377857	-0.305521347334971	
322	-9.375	13.625	-111.927894116552	13.3097852382029	-0.31031413674995	
323	-9.375	13.875	-111.981336535341	13.4109440305209	-0.313978001253419	
324	-9.375	14.125	-98.9821523787338	12.3540814295835	-0.293418432167674	
325	-9.375	14.375	-101.502011084672	12.6854109961493	-0.303551353772894	
326	-9.375	14.625	-102.800731480916	12.924368228488	-0.311521701444732	
327	-9.375	14.875	-88.3210679594497	11.708919350181	-0.286961213095386	
328	-9.375	15.125	-83.4029928699106	11.3525839156268	-0.280802360364311	
329	-9.375	15.375	-85.3815097822502	11.6518174912035	-0.289503661505443	
330	-9.375	15.625	-75.8646372552562	10.89700436734	-0.274403931108197	
331	-9.375	15.875	-73.4142701033979	10.7988303139538	-0.27456919069578	
332	-9.375	16.125	-59.6247885670362	9.63909587964883	-0.250407459110118	
333	-9.375	16.375	-44.4843453890478	8.36300691417265	-0.223710932955755	
334	-9.375	16.625	-40.4433890941833	8.10425194345414	-0.220127969839948	
335	-9.375	16.875	-38.7375359263087	8.03451549880863	-0.221020069006462	
336	-9.375	17.125	-24.042767415917	6.78376071931812	-0.195602336402508	
337	-9.375	17.375	-20.7930449975075	6.50028433975093	-0.190258523966933	
338	-9.375	17.625	-9.54471290066764	5.52369476019057	-0.169848837484491	
339	-9.375	17.875	13.3504065270183	3.49771753112635	-0.126315558997602	
340	-9.375	18.125	2.68710626788796	4.49736559356034	-0.149867495421866	
341	-9.375	18.375	25.2101234886369	2.50582631741986	-0.106697651170554	
342	-9.375	18.625	26.4009583525514	2.40066342922603	-0.104881812163947	
343	-9.375	18.875	32.049757460613	1.8915472918812	-0.094845340633915	
344	-9.375	19.125	40.4951212267838	1.17406397298861	-0.080969503531851	
345	-9.375	19.375	46.2210055116251	0.674686873603312	-0.070571716062683	
346	-9.375	19.625	47.5721964912606	0.5/9031235649224	-0.069225540484543	
347	-9.375	19.875	57.6482799139261	-0.333080425911489	-0.049165394134265	
348	-9.125	11.875	-114.099900865786	13.1362823161672	-0.301200417168739	
349	-9.125	12.125	-115.5/66600/6//5	13.3483034/30909	-0.30682926481/86/	
350	-9.125	12.3/5	-116.241349/18153	13.5021931119602	-0.312262495447524	
351	-9.125	12.625	-108./05/31/2642/	12.80/4660014648	-0.29/031624021466	
352	-9.125	12.8/5	-108.982143834/89	12.866851/8534/6	-0.298608268356845	
353	-9.125	13.125	-98.0682610353428	11.92529/18283/9	-0.2/80624018/9329	
354	-9.125	13.3/5	-106.568398381073	12./405426523492		
355	-9.125	13.625	-116.184386832/25	13./253686/1/833	-0.32036/886081484	
356	-9.125	13.8/5	-115.246296277837	13./5020042//5/8	-0.322542523308258	
35/	-9.125	14.125	-119./0941///2434	14.2/52354482896	-0.33050041449583	
350	-9.125	14.3/5		12./91/913/1800b	-0.305498282166/8	
359	-9.125	14.625	-100.001014055054	12./41918/295301	-0.308361894234184	
360	-9.125	14.8/5	-00.593229368413/	11.51//350902/45	-0.28202121/83554	

#	Х	Х	b0	b1	b2	
361	-9.125	15.125	-83.4231160277824	11.3146332922648	-0.27904179089696	
362	-9.125	15.375	-79.5708984044328	11.0888935119857	-0.276173724584835	
363	-9.125	15.625	-77.2317869594792	11.0162791171796	-0.277307226375327	
364	-9.125	15.875	-68.6398292806688	10.3502075100466	-0.26435337631263	
365	-9.125	16.125	-67.1306548793159	10.3323383848709	-0.266173896122321	
366	-9.125	16.375	-52.3072586970982	9.06641463324202	-0.239560493361176	
367	-9.125	16.625	-49.3351745466839	8.87738524096511	-0.236976692288573	
368	-9.125	16.875	-40.5104303303706	8.18208022514652	-0.22401936350935	
369	-9.125	17.125	-18.4471259137062	6.24282245497573	-0.182735697805137	
370	-9.125	17.375	-14.8087330860049	5.9605712860378	-0.178120582149702	
371	-9.125	17.625	-6.84236983318872	5.26737523567926	-0.163972865741954	
372	-9.125	17.875	6.46930758454616	4.12220160064498	-0.140386369659073	
373	-9.125	18.125	9.34153117129357	3.91847935712846	-0.137401541730317	
374	-9.125	18.375	18.1614640378369	3.15953345721596	-0.121370513884917	
375	-9.125	18.625	26.353649535455	2.43718197328072	-0.106197557719789	
376	-9.125	18.875	36.7979877881127	1.46566214289387	-0.085501356260277	
377	-9.125	19.125	41.6335083441786	1.09032351794063	-0.079506062268669	
378	-9.125	19.375	49.1781346188794	0.416779696491003	-0.064998336556895	
379	-9.125	19.625	56.4264198843649	-0.204081397102706	-0.052229789806928	
380	-9.125	19.875	61.9514777322385	-0.69362547179573	-0.04173807181738	
381	-8.875	11.875	-111.527125271284	12.8594083470471	-0.293904082901551	
382	-8.875	12.125	-112.923720841741	13.08326587549	-0.300708424265789	
383	-8.875	12.375	-113.111810606213	13.1212934031829	-0.30223093401302	
384	-8.875	12.625	-111.084344550424	12.9011615228975	-0.29739832268696	
385	-8.875	12.875	-112.016688505553	13.0484985779116	-0.301443657653998	
386	-8.875	13.125	-111.521330225645	13.1248957053065	-0.305286629818545	
387	-8.875	13.375	-107.603066436192	12.8271167050546	-0.299003320125975	
388	-8.875	13.625	-115.279573180757	13.6248822902426	-0.31831810718937	
389	-8.875	13.875	-118.102903423458	13.9988912448176	-0.3284120553611	
390	-8.875	14.125	-103.198291829783	12.7557707389704	-0.302270200776673	
391	-8.875	14.375	-110.812846984264	13.5626448418042	-0.32307082753537	
392	-8.875	14.625	-103.279358453673	13.0085224220014	-0.314353156579724	
393	-8.875	14.875	-89.3126431017103	11.7785909014131	-0.287779959956261	
394	-8.875	15.125	-93.4102901862521	12.2173674407816	-0.299300499932065	
395	-8.875	15.375	-76.8328447385258	10.8484589367359	-0.271110094879019	
396	-8.875	15.625	-77.146995764897	11.005655751243	-0.276837814187305	
397	-8.875	15.875	-69.6131780965889	10.4641271201812	-0.266980952849574	
398	-8.875	16.125	-63.8669010278278	10.0264705205555	-0.259010416516268	
399	-8.875	16.375	-51.1857385497525	8.95112121257672	-0.236803790866356	
400	-8.875	16.625	-43.3107399202587	8.33821914095468	-0.225129080306152	
401	-8.875	16.875	-39.2779171068118	8.06811652754731	-0.221418825332829	
402	-8.875	17.125	-15.7888517360542	5.97227243128166	-0.175952073716607	
403	-8.875	17.375	-13.1894985917065	5.81564285404787	-0.174933958674623	
404	-8.875	17.625	-0.138313145041761	4.66505699275133	-0.15069100899905	
405	-8.875	17.875	7.87275473920263	3.99937018168136	-0.13781498898298	
406	-8.875	18.125	8.94495509935319	3.94043817371503	-0.13773260690655	

#	Х	Х	b0	b1	b2
407	-8.875	18.375	12.5825675107416	3.65629518987117	-0.132511256831445
408	-8.875	18.625	29.3784062704504	2.1525594486871	-0.099908123652405
409	-8.875	18.875	35.4407337129407	1.6010399012607	-0.08888465258595
410	-8.875	19.125	45.7310960060812	0.715566275412639	-0.070929210525418
411	-8.625	12.125	-112.587013836761	12.9861025625933	-0.297208353268131
412	-8.625	12.625	-125.943633100831	14.2878892600704	-0.330326022251239
413	-8.625	12.875	-123.444878796768	14.2994402914673	-0.334518130957133
414	-8.625	13.125	-114.043451303179	13.4821368549736	-0.316078121514675
415	-8.625	13.375	-120.923181723083	14.1235690205869	-0.329986835611628
416	-8.625	13.625	-123.788961554431	14.4299700608098	-0.336933508334493
417	-8.625	13.875	-114.469252789895	13.646370177579	-0.320033653354029
418	-8.625	14.125	-105.605616697208	12.984041947082	-0.307845441227168
419	-8.625	14.375	-109.671537399887	13.4550573126419	-0.320758192867567
420	-8.625	14.625	-91.4308745743563	11.9197201134749	-0.289709003000633
421	-8.625	14.875	-91.4638053533912	11.9887143077284	-0.292702406207235
422	-8.625	15.125	-91.6160780333856	12.0743547704295	-0.296625153516266
423	-8.625	15.375	-71.7503485817685	10.4129123547617	-0.262192171327864
424	-8.625	15.625	-74.0878843258784	10.7637519163006	-0.272395277080405
425	-8.625	15.875	-74.4561070869187	10.8990371362928	-0.276959619770325
426	-8.625	16.125	-65.5421283096383	10.2084845679243	-0.263969876586144
427	-8.625	16.375	-58.3870830126866	9.61897402054362	-0.252345492111002
428	-8.625	16.625	-35.3048043138462	7.57768838740191	-0.207713302964073
429	-8.625	16.875	-27.7583921229871	6.99717260103342	-0.197053990553958
430	-8.625	17.125	-17.601329032354	6.13155022526606	-0.17945543464519
431	-8.625	17.375	0.286719749283035	4.57336193094587	-0.146747773432601
432	-8.625	17.625	-0.432585734750085	4.70078113953207	-0.151646316403507
433	-8.625	17.875	3.8381075863367	4.35794679277811	-0.145658606239522
434	-8.625	18.125	6.6588336595082	4.14273258556056	-0.142251249266161
435	-8.625	18.375	12.655561721396	3.64042017821636	-0.132421596884286
436	-8.625	18.625	19.5731990415984	3.05125880464801	-0.120525149502697
437	-8.625	18.875	31.39777891051	1.9966841299776	-0.098215716436342
438	-8.375	12.375	-117.421932430586	13.5455112495489	-0.312446189819491
439	-8.375	12.625	-123.335558617134	14.1231343869015	-0.327847043808384
440	-8.375	12.875	-113.59034063653	13.4037160848644	-0.314707676055829
441	-8.375	13.125	-119.83869075741	14.051838321752	-0.330231093405058
442	-8.375	13.375	-121.666760054664	14.2357157911504	-0.333640885784914
443	-8.375	13.625	-108.814226334595	13.1185374863877	-0.308645476751738
444	-8.375	13.875	-111.633534556259	13.4063225558296	-0.315126872044623
445	-8.375	14.125	-110.547459313026	13.4129333843052	-0.317319704151056
446	-8.375	14.375	-97.3373404281752	12.3190550163222	-0.295498217683788
447	-8.375	14.625	-101.016917541595	12.7975241570013	-0.3100380683951
448	-8.375	14.875	-105.639806099923	13.2882226585294	-0.322414793783746
449	-8.375	15.125	-97.2742629713764	12.5829346149869	-0.307776612742945
450	-8.375	15.375	-83.4367990655253	11.4810971714584	-0.286383829107412
451	-8.375	15.625	-79.5619888575125	11.2600067497656	-0.283774147904558
452	-8.375	15.875	-73.6341332093634	10.8362084297498	-0.276412961007098

#	Х	Х	b0	b1	b2	
453	-8.375	16.125	-56.7946124876475	9.40776310355209	-0.246523167086239	
454	-8.375	16.375	-48.3510555992944	8.69917376535562	-0.231625088289606	
455	-8.375	16.625	-40.775550941467	8.07344505564367	-0.218685907771216	
456	-8.375	16.875	-30.1012945290081	7.17319262018997	-0.200540911384056	
457	-8.375	17.125	-21.5007278548239	6.46046922358582	-0.186535507862917	
458	-8.375	17.375	-5.08973304805845	5.03846541084951	-0.156841287144114	
459	-8.375	17.625	0.016310072950985	4.62889083125643	-0.149430083703992	
460	-8.375	17.875	-0.442039337598924	4.74329374050109	-0.15415678821089	
461	-8.375	18.125	17.2629669736857	3.18686405739194	-0.12093552697643	
462	-8.375	18.375	18.1080244778182	3.13583166574894	-0.120820444088549	
463	-8.375	18.625	20.5822791963761	2.97209751468207	-0.119128210112933	
464	-8.125	13.125	-116.785720234388	13.7521219562968	-0.323482820890215	
465	-8.125	13.375	-112.348362432877	13.4115941889645	-0.315944962501674	
466	-8.125	13.625	-115.007674574073	13.6169964941846	-0.319034465089384	
467	-8.125	13.875	-114.574036283901	13.6226769107585	-0.319808502005567	
468	-8.125	14.125	-118.752156378355	14.0517608030445	-0.33038766596309	
469	-8.125	14.375	-100.204522658554	12.5944238677935	-0.30243127824485	
470	-8.125	14.625	-105.318803238153	13.2258355866465	-0.320874959715641	
471	-8.125	14.875	-97.8101422314243	12.6121350334863	-0.308057480979527	
472	-8.125	15.125	-90.0858851391552	11.9702746716449	-0.294695758533908	
473	-8.125	15.375	-83.0408279512271	11.4322969516472	-0.28492331034392	
474	-8.125	15.625	-77.9603475831028	11.0823157529486	-0.279309105869355	
475	-8.125	15.875	-66.3265540073442	10.1605621644714	-0.261241240686476	
476	-8.125	16.125	-60.1284708195278	9.69258851328395	-0.252535433416608	
477	-8.125	16.375	-45.926817850616	8.47411665440998	-0.226490184556701	
478	-8.125	16.625	-39.7216932475513	7.98203541751106	-0.216607357510927	
479	-8.125	16.875	-34.0800026073114	7.51773011714146	-0.208034025402244	
480	-8.125	17.125	-22.0692865326642	6.51331779736328	-0.187839593271879	
481	-8.125	17.375	-8.36238154672663	5.3403825933262	-0.163753891027864	
482	-8.125	17.625	-6.3019517392991	5.22714547727434	-0.163462250711733	
483	-8.125	17.875	-2.77393940140672	4.96233338525352	-0.158948332323345	
484	-8.125	18.125	-1.94758590792421	4.94189252871902	-0.159986688643156	
485	-8.125	18.375	20.0531735692907	2.98198005180851	-0.11770404113776	
486	-8.125	18.625	24.2983578511747	2.63741792903987	-0.111688428126632	
487	-7.875	10.125	-89.0499989090032	10.4991096606117	-0.235710691803338	
488	-7.875	10.375	-85.9142339899968	10.242522385943	-0.230536988913212	
489	-7.875	10.625	-100.658706723916	11.6970314125746	-0.265852562565039	
490	-7.875	10.875	-111.588729846659	12.7496769883918	-0.2903657622078	
491	-7.875	11.125	-119.346333275811	13.5150642333053	-0.3081273524332	
492	-7.875	11.375	-126.232317708107	14.1656427322215	-0.322823419872092	
493	-7.875	11.625	-120.954515350653	13.7546054021203	-0.315080204800068	
494	-7.875	11.875	-124.190346953713	14.097353406264	-0.323580621157502	
495	-7.875	12.125	-121.84874591031	13.9458634187141	-0.321374376056692	
496	-7.875	13.625	-101.801344596893	12.4575870116604	-0.294438652733583	
497	-7.875	13.875	-119.690809063502	14.1177309692558	-0.332210533567686	
498	-7.875	14.125	-94.2020909250206	11.9198953284209	-0.28496351494949	

#	Х	Х	b0	b1	b2	
499	-7.875	14.375	-101.83212710725	12.7618129220756	-0.306819745583596	
500	-7.875	14.625	-90.565285250982	11.9013995938956	-0.291564003712433	
501	-7.875	14.875	-94.5219850356942	12.3390344999183	-0.302446588707969	
502	-7.875	15.125	-91.3892778329598	12.111825710649	-0.298353684712407	
503	-7.875	15.375	-86.5815278414972	11.7837013426613	-0.293252164258526	
504	-7.875	15.625	-77.2759588653797	11.0334706842814	-0.278389046407633	
505	-7.875	15.875	-75.8569205701049	10.979164849046	-0.278637923001985	
506	-7.875	16.125	-59.9224034428132	9.64412289997435	-0.250867529880781	
507	-7.875	16.375	-48.8995773989938	8.75456121193137	-0.232996028851327	
508	-7.875	16.625	-39.6532807239957	7.98062246288423	-0.216628155122367	
509	-7.875	16.875	-34.6271774412616	7.56872400199799	-0.208977807674029	
510	-7.875	17.125	-33.2260255490064	7.5245196715769	-0.21051194980785	
511	-7.875	17.375	-26.567647186131	6.99420057769355	-0.200955062723034	
512	-7.875	17.625	-10.0195339626223	5.5876579725134	-0.171884643752175	
513	-7.875	17.875	-7.5138038039858	5.41472372659916	-0.169523586991155	
514	-7.625	9.875	-75.8628622395793	9.2643306376673	-0.207353709637727	
515	-7.625	10.125	-86.1959930225522	10.2636113135234	-0.230782990171897	
516	-7.625	10.375	-88.3525084118774	10.5432892759464	-0.23909767779411	
517	-7.625	10.625	-99.6037423130082	11.6074460307068	-0.263895598489285	
518	-7.625	10.875	-108.963246570384	12.497431971623	-0.284521711922593	
519	-7.625	11.125	-119.806394115374	13.5403405595035	-0.308399728365553	
520	-7.625	11.375	-107.139629023229	12.4376352392499	-0.284162033706444	
521	-7.625	11.625	-123.376454754992	13.9430869432864	-0.318527127063544	
522	-7.625	11.875	-120.054370948479	13.7132114724846	-0.314582489181054	
523	-7.625	12.125	-122.345270658686	13.9613556075682	-0.32086335937131	
524	-7.625	13.625	-104.535379443362	12.7180015424647	-0.300705981667487	
525	-7.625	13.875	-113.059929214603	13.566469517611	-0.321088616187111	
526	-7.625	14.125	-98.9873644317015	12.3932298265049	-0.296596555855729	
527	-7.625	14.375	-96.9609095613884	12.3099686765593	-0.296523728420537	
528	-7.625	14.625	-88.6887812177329	11.693592587933	-0.285647534318975	
529	-7.625	14.875	-87.2030135940355	11.7053380106591	-0.288939707326721	
530	-7.625	15.125	-82.4390708528647	11.3482891171738	-0.282619880686111	
531	-7.625	15.375	-80.0460620858425	11.1867417133362	-0.279802596075949	
532	-7.625	15.625	-80.1731348239376	11.2898494272904	-0.284022037105915	
533	-7.625	15.875	-76.8689545792326	11.0421505980759	-0.279542769661248	
534	-7.625	16.125	-54.5165173063636	9.15136989321598	-0.239671260011726	
535	-7.625	16.375	-51.6986367136048	8.97606272089726	-0.237193609022239	
536	-7.625	16.625	-40.0562072659441	8.02774377728082	-0.217664046842371	
537	-7.625	16.875	-30.2886909493563	7.20292834909508	-0.200812966404734	
538	-7.625	17.125	-35.9585168979159	7.77941158254272	-0.216201613396724	
539	-7.625	17.375	-20.3383479549604	6.44517381729292	-0.188954889558404	
540	-7.625	17.625	-12.1969580839244	5.79778069975464	-0.176644436027256	
541	-7.625	17.875	-8.68802544584272	5.53308314463924	-0.172528961271453	
542	-7.375	9.625	-72.1640665639865	8.8691054658962	-0.197427275614673	
543	-7.375	9.875	-76.2169029207495	9.30652505216512	-0.208379801348375	
544	-7.375	10.125	-79.8103355079138	9.68246752514212	-0.217657148201722	

#	Х	Х	b0	b1	b2	
545	-7.375	10.375	-91.8536294933354	10.8865525382589	-0.247445659145331	
546	-7.375	10.625	-93.2917330107046	10.9979948422159	-0.249202302022177	
547	-7.375	10.875	-103.693321101118	12.0543080231313	-0.27543245095276	
548	-7.375	11.125	-119.225162689583	13.4931316818636	-0.307304132579611	
549	-7.375	11.375	-120.081579436378	13.6092594204163	-0.310211804821495	
550	-7.375	11.625	-119.311648465176	13.5831292929347	-0.310436842493939	
551	-7.375	11.875	-131.989017490898	14.819469511722	-0.33982278572481	
552	-7.375	12.125	-124.564432382661	14.20256496687	-0.326948077203817	
553	-7.375	12.375	-119.718488472071	13.8463115029336	-0.320778580153179	
554	-7.375	13.625	-113.232201499551	13.5737374742772	-0.321030172133161	
555	-7.375	13.875	-116.087707267547	13.9139880829572	-0.330180979378657	
556	-7.375	14.125	-111.258555848686	13.5468462383793	-0.323220518611945	
557	-7.375	14.375	-105.096281911686	13.0846147545772	-0.314511075940927	
558	-7.375	14.625	-89.0185382486056	11.7221968209457	-0.285797355182977	
559	-7.375	14.875	-86.7746000311606	11.6810977999837	-0.288698034778533	
560	-7.375	15.125	-88.1995571316022	11.8532452631324	-0.293425559935947	
561	-7.375	15.375	-83.5946529377124	11.5434415203422	-0.288575985676591	
562	-7.375	15.625	-77.5800588204104	11.0651437130019	-0.279221578135094	
563	-7.375	15.875	-78.6166408073995	11.2117117455129	-0.283102861432131	
564	-7.375	16.125	-70.6816064171902	10.5924848960024	-0.270973755316081	
565	-7.375	16.375	-59.1124033228045	9.63549376881187	-0.251342157121208	
566	-7.375	16.875	-50.5825543362503	9.03503710447026	-0.241625992822749	
567	-7.375	17.125	-36.5600258091317	7.83940431995753	-0.217640724794059	
568	-7.375	17.375	-23.706487275114	6.75578237936449	-0.195954546738825	
569	-7.125	9.875	-79.6042105118485	9.57790646089829	-0.21390015680763	
570	-7.125	10.125	-82.6392222309208	9.93563820973328	-0.223386287438501	
571	-7.125	10.375	-99.2570438132893	11.5248828614677	-0.260434754509792	
572	-7.125	10.625	-89.6824489538794	10.6573365413643	-0.241044939255122	
573	-7.125	10.875	-105.125743793558	12.1778603186355	-0.27769634193915	
574	-7.125	11.125	-118.549389306617	13.4532239666509	-0.30682967206983	
575	-7.125	11.375	-117.098488127216	13.3507272967253	-0.304556673355232	
576	-7.125	11.625	-117.417719303917	13.4517623108825	-0.308210786538255	
577	-7.125	11.875	-126.799597201486	14.3187223254543	-0.327753785428319	
578	-7.125	12.125	-123.467204001294	14.1023538316596	-0.324578193079009	
579	-7.125	12.375	-116./4/340/35357	13.5696669353272	-0.31419302410/943	
580	-7.125	12.625	-117.771204859477	13.7376628138115	-0.31923571161862	
581	-7.125	13.625	-123.435455017928	14.5341169217652	-0.342885809405207	
582	-7.125	13.875	-117.657969121854	14.08315/9313189	-0.334143466779343	
583	-7.125	14.125	-105.531986796397	13.0885/20/6/36	-0.313/11468598301	
584	-7.125	14.375	-101.849767077798	12.8066020321554	-0.308390633642772	
585	-7.125	14.625	-93./8254/32/2/78	12.1269256902655	-0.294215938/65878	
586	-/.125	14.875	-86./00091/918/2	11.6539973491655	-0.28/2946218/4003	
587	-/.125	15.125	-84.6622526998719	11.5426614821316	-0.2866528631215	
588	-/.125	15.375	-80./4/498886530/	11.3122609997102	-0.283920913744573	
589	-/.125	15.625	-//.8649522551901	11.099931/515994	-0.280012121569353	
590	-/.125	15.875	-/6.589135041342/	11.048306785941	-0.2/9604284691457	

#	Х	Х	b0	b1	b2	
591	-7.125	16.125	-81.3380897723319	11.5564595850918	-0.292203291302898	
592	-7.125	16.375	-71.7956094799838	10.8070636553211	-0.277581773685656	
593	-7.125	16.875	-57.6293310600769	9.62548644229112	-0.254691579593953	
594	-7.125	17.125	-40.6711007238064	8.19702512414263	-0.225935710910159	
595	-7.125	17.375	-29.6622032163256	7.30059976819083	-0.20850710179764	
596	-6.875	9.625	-68.1196055190639	8.4335115067154	-0.186486238031545	
597	-6.875	9.875	-86.1692129604537	10.1526095421002	-0.226534231416467	
598	-6.875	10.125	-90.9067678599252	10.7126405142589	-0.241532429780967	
599	-6.875	10.375	-93.2022220780605	11.0075419126118	-0.249572876132142	
600	-6.875	10.625	-97.6733897920703	11.4695867357521	-0.261006409856548	
601	-6.875	10.875	-110.683512551661	12.704091283412	-0.289743911667732	
602	-6.875	11.125	-114.979008253292	13.1030706583769	-0.298263633163041	
603	-6.875	11.375	-113.805004518188	13.0475265386018	-0.297660475388389	
604	-6.875	11.625	-121.810957813256	13.8552972609677	-0.317238655946872	
605	-6.875	11.875	-139.239470233282	15.5074576690151	-0.355571010981897	
606	-6.875	12.125	-125.756981428375	14.3038932404624	-0.328885599320653	
607	-6.875	12.375	-119.408367867355	13.8648218877692	-0.32184092590189	
608	-6.875	12.625	-120.337881048612	13.9930650807476	-0.325359614908908	
609	-6.875	13.875	-126.223978972119	14.8917331101146	-0.352666267909588	
610	-6.875	14.125	-107.787903197523	13.2996269825131	-0.318325307709752	
611	-6.875	14.375	-108.410292699586	13.4395152282264	-0.32302360335475	
612	-6.875	14.625	-90.8565114160217	11.9145164426577	-0.290187486021926	
613	-6.875	14.875	-90.7055833802932	11.9736155953304	-0.292719364954026	
614	-6.875	15.125	-84.3383896068872	11.483927079001	-0.284615876997078	
615	-6.875	15.375	-80.0911680034264	11.2373156432731	-0.282174466729003	
616	-6.875	15.625	-88.3150130454508	12.0404883549753	-0.301035758538128	
617	-6.875	15.875	-75.0001406131146	10.9353420004662	-0.277842300363336	
618	-6.875	16.125	-80.7775558027551	11.5311225857086	-0.292489866126987	
619	-6.875	16.375	-67.751584084467	10.4406777461666	-0.270557420275366	
620	-6.875	17.125	-39.0286624953912	8.06082015200452	-0.22445406976733	
621	-6.875	17.375	-29.6239393453965	7.33068275298179	-0.210605531248041	
622	-6.625	9.375	-69.4035474314987	8.56842941373294	-0.189553400681275	
623	-6.625	9.625	-76.353010411968	9.2755771963426	-0.207183828828519	
624	-6.625	9.875	-90.5300657840042	10.663990919661	-0.240329898220218	
625	-6.625	10.125	-97.3139518304133	11.3926821340543	-0.259080588550447	
626	-6.625	10.375	-104.489390685155	12.0733515601022	-0.274345814509334	
627	-6.625	10.625	-104.023265300131	12.0312862662156	-0.272870486637339	
628	-6.625	10.875	-112.435984800694	12.8840559302307	-0.293985889697873	
629	-6.625	11.125	-116.708524293855	13.2623896282722	-0.301420173103794	
630	-6.625	11.375	-126.694793290914	14.2494149497676	-0.324868834042728	
631	-6.625	11.625	-122.345746700578	13.9167550736683	-0.318827954091679	
632	-6.625	11.875	-125.312286367485	14.2470873485225	-0.327419778609399	
633	-6.625	12.125	-114.371954187336	13.2978410726177	-0.307138459430347	
634	-6.625	12.375	-122.830593416791	14.1803997661704	-0.329099397554802	
635	-6.625	12.625	-118.747063227911	13.8454541095003	-0.321856851010175	
636	-6.625	14.875	-87.4789346660186	11.6605175098698	-0.285312446342102	

#	Х	Х	b0	b1	b2	
637	-6.625	15.125	-91.6012838409085	12.1232044316966	-0.298458928831402	
638	-6.625	15.375	-85.6042576212595	11.7247260501787	-0.292735199977131	
639	-6.625	15.625	-91.2362667298259	12.3195063731392	-0.30738913885703	
640	-6.625	15.875	-79.3454630011477	11.3733807979464	-0.288729138364473	
641	-6.375	9.375	-75.4555441452803	9.20799858941141	-0.205743774930428	
642	-6.375	9.625	-81.9146151468783	9.83445422022625	-0.220655810564416	
643	-6.375	9.875	-90.1918995001588	10.6771815210208	-0.241610181846184	
644	-6.375	10.125	-93.1103987197126	11.0068679437249	-0.250346940827705	
645	-6.375	10.375	-95.5957008707366	11.3017863973582	-0.258112288614457	
646	-6.375	10.625	-99.0812460306768	11.607278115846	-0.264192788440053	
647	-6.375	10.875	-108.939627153678	12.5300597749208	-0.284649270657385	
648	-6.375	11.125	-122.745845859053	13.8568376316426	-0.315012818290011	
649	-6.375	11.375	-121.055471445001	13.7312997785639	-0.312827688588806	
650	-6.375	11.625	-122.395686729352	13.9037367684318	-0.317963787058182	
651	-6.375	11.875	-117.14946572424	13.4914661670558	-0.309961380456232	
652	-6.375	12.125	-123.276206842131	14.1067351685652	-0.324798762175668	
653	-6.375	12.375	-125.108314296898	14.3567795942168	-0.331971400348887	
654	-6.375	12.625	-114.260883760551	13.4311367903809	-0.312367555054135	
655	-6.375	12.875	-126.462463968784	14.6542025084555	-0.342250442758528	
656	-6.375	13.125	-122.079542744351	14.3514618712617	-0.337575190085966	
657	-6.375	14.875	-83.9902142855235	11.3517407155781	-0.278475399699492	
658	-6.375	15.125	-82.4460640287942	11.3046750357151	-0.27977357968289	
659	-6.375	15.375	-80.3734812390444	11.2351599362616	-0.28139630253237	
660	-6.375	15.625	-93.9108613443305	12.5406940757192	-0.312592631550567	
661	-6.375	15.875	-86.9855588437982	12.0488107784008	-0.304293152982415	
662	-6.375	16.125	-69.6169294102358	10.5759069218465	-0.274049038214686	
663	-6.125	10.125	-91.1502897230607	10.862158373877	-0.247677560707707	
664	-6.125	10.375	-100.374885986502	11.7163484756121	-0.266926199607259	
665	-6.125	10.625	-101.113171569845	11.8141529497822	-0.269315031354081	
666	-6.125	10.875	-105.299554610977	12.2350348698255	-0.278785938574484	
667	-6.125	11.125	-110.518183033991	12.6941874082062	-0.288188455273438	
668	-6.125	11.375	-114.910343217178	13.1035851502953	-0.297713806032356	
669	-6.125	11.625	-114.716383416738	13.1782939641849	-0.301431635631886	
670	-6.125	11.875	-128.327063676639	14.5184789933547	-0.333427903512201	
671	-6.125	12.125	-126.174713444416	14.3595576340137	-0.330570945103924	
672	-6.125	12.375	-120.410723051622	13.9259435219058	-0.322232308450082	
673	-6.125	12.625	-121.533433456662	14.0702531774306	-0.326308223817402	
674	-6.125	12.875	-122.518587360587	14.2950032769797	-0.33420618175086	
675	-6.125	13.125	-126.541052515796	14.7843064979804	-0.347848629743403	
676	-5.875	10.375	-102.730990803102	11.9246575457156	-0.27139343183966	
677	-5.875	10.625	-96.5032399880615	11.362479302807	-0.2578927552714	
678	-5.875	10.875	-104.139989833877	12.0824717462933	-0.273945628073167	
679	-5.875	11.125	-102.911254506297	11.9051782880969	-0.269408669291863	
680	-5.875	11.375	-105.309163010466	12.1621822331537	-0.27598616361362	
681	-5.875	11.625	-115.383619847961	13.2425208183968	-0.303437494518483	
682	-5.875	11.875	-118.151396420683	13.5841554766621	-0.312557210708347	

#	Х	Х	b0	b1	b2	
683	-5.875	12.125	-116.718128682505	13.5041273214235	-0.311580203044549	
684	-5.875	12.375	-126.434536851979	14.4363351778035	-0.332930636037058	
685	-5.875	12.625	-119.277295855757	13.8552220155586	-0.321583814727208	
686	-5.875	12.875	-118.401889779901	13.8869518211304	-0.324772752517871	
687	-5.875	13.125	-134.156675877737	15.4535552732115	-0.362632736182925	
688	-5.625	10.625	-103.682362153262	11.9674961125256	-0.269990164659072	
689	-5.625	10.875	-103.393739536969	11.9333361636581	-0.269178554431143	
690	-5.625	11.125	-101.14705094782	11.6736802981147	-0.263030465885033	
691	-5.625	11.625	-127.835735420814	14.4156860148488	-0.330433804563059	
692	-5.625	11.875	-133.036393932172	14.9454504112888	-0.342992493905237	
693	-5.625	12.125	-128.147366975345	14.5455902516112	-0.334631094756746	
694	-5.625	12.375	-124.729192706166	14.2825187848593	-0.329543773887413	
695	-5.625	12.625	-121.209064465424	14.037304773101	-0.325879075972954	
696	-5.625	12.875	-127.189605618639	14.7106557285197	-0.343806141812999	
697	-5.625	13.125	-122.733443809931	14.4395242336977	-0.340445682539219	
698	-5.375	10.875	-99.2687997810126	11.4901761569645	-0.258120526524155	
699	-5.375	11.125	-105.468384210747	12.109950533575	-0.27434135871833	
700	-5.375	11.375	-116.511127359949	13.2884740187158	-0.304239310877303	
701	-5.375	11.625	-127.32763414822	14.417683358255	-0.331509342238754	
702	-5.375	11.875	-124.991916115444	14.2571215403749	-0.328379600996186	
703	-5.375	12.125	-127.672043772786	14.5252545661296	-0.334587057575661	
704	-5.375	12.375	-127.954221330663	14.5514144103077	-0.335374869195574	
705	-5.375	12.625	-114.275157078138	13.4179901057313	-0.31225560005629	
706	-5.375	12.875	-127.882288931727	14.775491677666	-0.345001644662417	
707	-5.375	13.125	-119.460950548611	14.1395545554162	-0.33346722610382	
708	-5.125	11.375	-122.406294293618	13.803883793781	-0.315173371178241	
709	-5.125	11.625	-130.389384489074	14.69933082882	-0.338020727462467	
710	-5.125	11.875	-126.232154059556	14.3854017544171	-0.33168422006967	
711	-5.125	12.125	-110.874338093203	12.9436209914323	-0.297927833800669	
712	-5.125	12.375	-114.200739395202	13.2808516161004	-0.306699398219104	
713	-5.125	12.625	-115.930360164629	13.5680561971035	-0.315552690192381	
714	-5.125	12.875	-130.958816680751	15.0610783751518	-0.35136668331189	
715	-5.125	13.125	-128.656988468457	14.931604305225	-0.350126280864312	
716	-4.875	11.625	-124.15042220073	14.102511541577	-0.323585306763027	
717	-4.875	11.875	-117.533412229612	13.4967370881536	-0.309460927313402	
718	-4.875	12.125	-121.113483641634	13.8331821442007	-0.316748689163229	
719	-4.625	11.875	-120.100515070964	13.7029792594921	-0.313567582086504	
720	-4.625	12.125	-120.981849513958	13.8077640733477	-0.316289816389821	
721	-4.875	13.375	-115.6805068456	13.859662175089	-0.327837851256422	
722	-6.125	13.375	-120.978822999303	14.3484514112855	-0.339573253314461	
723	-9.125	11.375	-117.948610914908	13.4066409265774	-0.306130390377548	
724	-5.625	11.375	-108.041443503222	12.4608576447481	-0.283809193095009	
725	-11.375	18.625	1.34590779070737	4.35797578043256	-0.141519159202607	

Año	Obs	Cal	MAE	ER	RMSE	Error
1985	342.683	494.428	151.745	44.282	151.745	151.745
1986	277.918	648.866	370.948	133.474	370.948	370.948
1987	167.738	552.315	384.577	229.272	384.577	384.577
1988	584.658	746.244	161.587	27.638	161.587	161.587
1989	430.138	705.647	275.508	64.051	275.508	275.508
1990	406.450	809.769	403.319	99.230	403.319	403.319
1991	460.862	794.073	333.211	72.302	333.211	333.211
1992	296.869	788.698	491.829	165.672	491.829	491.829
1993	298.267	599.534	301.267	101.006	301.267	301.267
1994	747.438	594.394	153.043	-20.476	153.043	153.043
1995	411.350	649.552	238.202	57.907	238.202	238.202
1996	414.039	869.987	455.948	110.122	455.948	455.948
1997	461.511	610.142	148.631	32.205	148.631	148.631
1998	707.126	651.609	55.517	-7.851	55.517	55.517
1999	1003.971	788.955§	215.016	-21.417	215.016	215.016
2000	§	§	§	§	§	§
2001	590.226	681.908	91.682	15.533	91.682	91.682
2002	295.921	816.305	520.384	175.853	520.384	520.384
2003	817.550	596.245	221.305	-27.069	221.305	221.305
2004	§	§	§	§	§	§
2005	419.964	913.563	493.600	117.534	493.600	493.600
2006	356.285	780.939	424.654	119.189	424.654	424.654
2007	780.903	800.199	19.297	2.471	19.297	19.297
2008	580.997	551.641	29.356	-5.053	29.356	29.356
2009	485.299	841.462	356.163	73.391	356.163	356.163
2010	678.669	920.758	242.090	35.671	242.090	242.090
2011	280.102	773.428	493.327	176.124	493.327	493.327
2012	917.989	707.893	210.096	-22.887	210.096	210.096
2013	457.935	894.074	436.138	95.240	436.138	436.138
2014	511.918	757.811	245.892	48.033	245.892	245.892
2015	548.745	829.868	281.124	51.230	281.124	281.124
2016	1093.652	932.403	161.249	-14.744	161.249	161.249

Anexo B4. Caudales medios anuales calculados y observados en Beneny Kegny.

Año	Obs	Cal	MAE	ER	RMSE	Error
1985	227.349	211.555	15.794	-6.947	15.794	15.794
1986	165.852	258.001	92.150	55.562	92.150	92.150
1987	78.779	212.061	133.282	169.185	133.282	133.282
1988	307.875	308.447	0.573	0.186	0.573	0.573
1989	324.772	302.687	22.085	-6.800	22.085	22.085
1990	168.229	312.849	144.620	85.966	144.620	144.620
1991	234.087	334.538	100.451	42.912	100.451	100.451
1992	108.775	314.779	206.003	189.384	206.003	206.003
1993	155.972	255.380	99.408	63.735	99.408	99.408
1994	328.853	237.851	91.003	-27.673	91.003	91.003
1995	363.778	269.639	94.139	-25.878	94.139	94.139
1996	273.648	341.950	68.302	24.960	68.302	68.302
1997	293.999	236.560	57.439	-19.537	57.439	57.439
1998	377.895	268.699	109.196	-28.896	109.196	109.196
1999	401.328	325.347	75.982	-18.933	75.982	75.982
2000	268.161	350.426	82.265	30.678	82.265	82.265
2001	316.529	279.121	37.408	-11.818	37.408	37.408
2002	214.413	342.388	127.975	59.686	127.975	127.975
2003	543.307	256.143	287.164	-52.855	287.164	287.164
2004	292.990	385.655	92.665	31.628	92.665	92.665
2005	290.006	343.713	53.707	18.519	53.707	53.707
2006	148.350	291.848	143.498	96.729	143.498	143.498
2007	288.489	328.812	40.324	13.978	40.324	40.324
2008	311.408	215.899	95.508	-30.670	95.508	95.508
2009	455.182	347.576	107.607	-23.640	107.607	107.607
2010	537.891	372.057	165.834	-30.830	165.834	165.834
2011	364.374	310.354	54.020	-14.825	54.020	54.020
2012	533.193	283.154	250.039	-46.895	250.039	250.039
2013	673.453	420.027	253.426	-37.631	253.426	253.426
2014	250.458	302.877	52.419	20.929	52.419	52.419
2015	662.086	348.278	313.809	-47.397	313.809	313.809
2016	622.043	376.543	245.500	-39.467	245.500	245.500

Anexo B5. Caudales medios anuales calculados y observados en Kidira.

Año	Obs	Cal	MAE	ER	RMSE	Error
1985	509.415	602.980	93.565	18.367	93.565	93.565
1986	487.965	674.572	186.607	38.242	186.607	186.607
1987	444.787	641.313	196.525	44.184	196.525	196.525
1988	601.545	717.996	116.450	19.359	116.450	116.450
1989	497.620	708.808	211.188	42.440	211.188	211.188
1990	543.294	729.752	186.458	34.320	186.458	186.458
1991	612.452	774.605	162.152	26.476	162.152	162.152
1992	519.300	747.654	228.354	43.973	228.354	228.354
1993	432.017	701.298	269.281	62.331	269.281	269.281
1994	657.310	684.764	27.453	4.177	27.453	27.453
1995	671.099	707.625	36.526	5.443	36.526	36.526
1996	589.432	760.164	170.731	28.965	170.731	170.731
1997	619.136	699.158	80.022	12.925	80.022	80.022
1998	666.292	723.705	57.413	8.617	57.413	57.413
1999	562.934	762.542	199.608	35.459	199.608	199.608
2000	560.284	781.093	220.809	39.410	220.809	220.809
2001	758.216	729.463	28.753	-3.792	28.753	28.753
2002	677.809	797.358	119.549	17.638	119.549	119.549
2003	944.980	703.451	241.529	-25.559	241.529	241.529
2004	573.352	815.879	242.527	42.300	242.527	242.527
2005	671.779	778.850	107.071	15.938	107.071	107.071
2006	468.761	762.377	293.616	62.637	293.616	293.616
2007	698.724	774.010	75.286	10.775	75.286	75.286
2008	673.246	674.927	1.682	0.250	1.682	1.682
2009	673.784	768.016	94.232	13.985	94.232	94.232
2010	785.323	804.050	18.727	2.385	18.727	18.727
2011	675.529	746.636	71.106	10.526	71.106	71.106
2012	742.495	734.539	7.957	-1.072	7.957	7.957
2013	719.238	830.050	110.812	15.407	110.812	110.812
2014	598.394	761.931	163.537	27.329	163.537	163.537
2015	737.022	786.050	49.028	6.652	49.028	49.028
2016	730.936	812.137	81.201	11.109	81.201	81.201

Anexo B6. Caudales medios anuales calculados y observados en Bafing Makana.

Año	Obs	Cal	MAE	ER	RMSE	Error
1985	154.037	180.333	26.296	17.071	26.296	26.296
1986	115.593	228.598	113.005	97.761	113.005	113.005
1987	64.443	197.677	133.234	206.747	133.234	133.234
1988	398.901	270.684	128.217	-32.143	128.217	128.217
1989	179.631	266.653	87.022	48.445	87.022	87.022
1990	130.960	277.464	146.504	111.869	146.504	146.504
1991	190.489	316.402	125.913	66.100	125.913	125.913
1992	149.531	300.269	150.738	100.807	150.738	150.738
1993	144.329	227.796	83.467	57.831	83.467	83.467
1994	395.790	200.746	195.044	-49.280	195.044	195.044
1995	386.175	236.841	149.333	-38.670	149.333	149.333
1996	245.424	310.376	64.952	26.465	64.952	64.952
1997	242.487	230.542	11.945	-4.926	11.945	11.945
1998	223.491	245.973	22.482	10.060	22.482	22.482
1999	382.211	304.394	77.818	-20.360	77.818	77.818
2000	204.045	322.833	118.788	58.217	118.788	118.788
2001	232.656	256.987	24.332	10.458	24.332	24.332
2002	189.142	339.899	150.757	79.706	150.757	150.757
2003	482.548	211.846	270.702	-56.098	270.702	270.702
2004	164.606	369.708	205.101	124.601	205.101	205.101
2005	319.061	336.133	17.072	5.351	17.072	17.072
2006	151.025	293.765	142.740	94.514	142.740	142.740
2007	392.804	311.750	81.054	-20.635	81.054	81.054
2008	362.680	209.634	153.047	-42.199	153.047	153.047
2009	343.909	333.302	10.607	-3.084	10.607	10.607
2010	327.596	360.925	33.329	10.174	33.329	33.329
2011	265.996	296.854	30.859	11.601	30.859	30.859
2012	486.782	258.285	228.497	-46.940	228.497	228.497
2013	490.975	382.478	108.498	-22.098	108.498	108.498
2014	133.692	280.396	146.705	109.733	146.705	146.705
2015	355.894	320.129	35.765	-10.049	35.765	35.765
2016	444.473	389.495	54.978	-12.369	54.978	54.978

Anexo B7. Caudales medios anuales calculados y observados en Oualia.

Anexo C. Complementos de estadística

Anexo C1. Método de mínimos cuadrados.

Para encontrar la mejor curva de ajuste (lineal, parábola etc.) entre los datos de las variables independientes y dependiente, es necesario encontrar el mínimo de la desviación, error o residuo. Lo que es lo mismo encontrar los parámetros de β_0 y β_1 para minimizar la suma de cuadrados de los residuales (Dalgaard, 2008). Para un valor dado de *x*, digamos *x*₁, habrá una diferencia entre el valor *y*₁ y el valor correspondiente con la diferencia *d*₁. La desviación puede ser positiva, negativa o cero. De la misma manera, a los valores *x*₂, …, *n*_x, les corresponde las desviaciones *d*₂, …, *d*_n. La cantidad de *d*₁²+ *d*₂²+ …+ *d*_n² provee una medida de la bondad de ajuste de la curva. Si esta curva es pequeña, el ajuste es bueno, si es grande, el ajuste es malo (Spiegel et al., 2010).

La recta de mínimos cuadrados se aproxima al conjunto de puntos (x_1 , y_1), ..., (x_n , y_n) de la Ecuación 2.2 (Dalgaard, 2008; Spiegel et al., 2010; Vinuesa, 2016). Donde las constantes β_0 y β_1 se determinan resolviendo simultáneamente las ecuaciones:

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$
$$\widehat{\beta}_0 = \bar{y} - \beta \bar{x} = \frac{\sum y}{n} - b \frac{\sum x}{n}$$

La pendiente empírica y el intercepto se desvían un poco de los valores reales debido a la variación del muestreo. Si se generaran varios conjuntos de y_i en el mismo conjunto de x_i , se observaría una distribución de pendientes empíricas con sus interceptos. De la misma manera que se podría calcular el error estándar de la media (*sem*, que es el cociente entre la desviación típica y la raíz cuadrada de *n*) para describir la variabilidad de la media empírica. También es posible a partir de una sola muestra de (x_i , y_i) para calcular el error

estándar (s.e) de las estimaciones calculadas, $s.e(\widehat{\beta}_o)$ y $s.e(\widehat{\beta}_o)$. Estos errores estándar pueden utilizarse para calcular los intervalos de confianza de los parámetros y comprobar si un parámetro tiene un valor específico (Dalgaard, 2008).

El método de mínimos cuadrados garantiza encontrar el valor de máxima verosimilitud de los parámetros del modelo lineal para un conjunto de datos, al minimizar la magnitud de la diferencia entre los puntos y la recta (Figura A) (Vinuesa, 2016).

Figura A. Ajuste por mínimos cuadrados, fuente: https://www.khanacademy.org/.

Anexo C2. Diagrama de caja y bigote (boxplot).

En la Figura B se muestra el esquema de un diagrama de caja y bigote, llamado comúnmente con su nombre en inglés *boxplot*. Este gráfico resumen la información y muestra a priori la distribución de los datos. La caja corresponde con el rango intercuartil (RIC) y contiene el 50% de la información. El RIC se compone de tres partes, en la parte inferior, el cuartil 25 (Q1), el cuartil 50 (Q2 o mediana) y el cuartil 75 (Q3). Las lineas que continúan la caja son los bigotes, sus extremos corresponden con 1.5 veces el RIC y los valores extremos o atípicos son aquellos que rebasan 1.5 veces el RIC.

Boxplot (Diagrama de caja y bigote)

Valor atípico: mayor a 1.5 RIC

Figura B. Diagrama boxplot.

Anexo C3. Método de silueta para la elección del número de clúster.

El método de la silueta se utiliza para encontrar el número óptimo de clusters. El método mide la distancia entre los clúster. Para ello calcula los coeficientes de silueta de cada punto que miden cuánto se parece un punto a su propio clúster en comparación con otros clústeres. La distancia se encuentra en el rango [-1, 1]. Un valor alto indica un buen clustering, es decir, la observación se encuentra lejos de otros clúster, si es 0 indica que está lejos o en la forntera de desición. <u>https://towardsdatascience.com/silhouette-method-better-than-elbow-method-to-find-optimal-clusters-378d62ff6891</u>. El coeficiente de silueta se calcula como:

$$S = \frac{b-a}{max(a,b)}$$

Donde *a* es la distancia media entre los clúster y *b* es la distnacia media a las observaciones del clúster más cercano.